Sex differences in aggression and its neural substrate in a cichlid fish.

Lillian R Jackson, Mariam Dumitrascu, Beau A Alward
Author Information
  1. Lillian R Jackson: Department of Psychology, University of Houston, Houston, USA.
  2. Mariam Dumitrascu: Department of Psychology, University of Houston, Houston, USA.
  3. Beau A Alward: Department of Psychology, University of Houston, Houston, USA. balward@uh.edu.

Abstract

Aggression is ubiquitous among social species and can function to maintain social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying Aggression due to their dominance hierarchy and robust behavioral repertoire. To further understand the potential sex differences in Aggression in this species, we characterized Aggression in male and female A. burtoni in a mirror assay. We then quantified neural activation patterns in brain regions of the social behavior network (SBN) to investigate if differences in behavior are reflected in the brain with immunohistochemistry by detecting the phosphorylated ribosome marker phospho-S6 ribosomal protein (pS6), a marker for neural activation. We found that A. burtoni perform both identical and sex-specific aggressive behaviors in response to a mirror assay. Females had greater pS6 immunoreactivity than males in the Vv (ventral part of the ventral telencephalon), a homolog of the lateral septum in mammals. Males but not females had higher pS6 immunoreactivity in the ATn after the Aggression assay. The ATn (anterior tuberal nucleus) is a homolog of the ventromedial hypothalamus in mammals, which is strongly implicated in the regulation of Aggression in males. Several regions also have higher pS6 immunoreactivity in negative controls than fish exposed to a mirror, implicating a role for inhibitory neural processes in suppressing Aggression until a relevant stimulus is present. Male and female A. burtoni display both similar and different behavioral patterns in Aggression in response to a mirror assay. There are also sex differences in the corresponding neural activation patterns in the SBN. In mirror males but not females, the ATn clusters with the POA, revealing a functional connectivity of these regions that is triggered in an aggressive context in males. These findings suggest that distinct neural circuitry underlie aggressive behavior in male and female A. burtoni, serving as a foundation for future work investigating the molecular and neural underpinnings of sex differences in behavior in this species to reveal fundamental insights into understanding Aggression.

References

  1. Philos Trans R Soc Lond B Biol Sci. 2016 Feb 19;371(1688):20150109 [PMID: 26833830]
  2. Horm Behav. 2023 Jan;147:105295 [PMID: 36502603]
  3. Integr Comp Biol. 2009 Oct;49(4):423-40 [PMID: 21665831]
  4. J Comp Neurol. 2005 Oct 24;491(3):212-33 [PMID: 16134137]
  5. Sci Rep. 2018 May 1;8(1):6818 [PMID: 29717159]
  6. Nat Rev Neurosci. 2007 Jul;8(7):536-46 [PMID: 17585306]
  7. Neuron. 2017 Aug 16;95(4):955-970.e4 [PMID: 28757304]
  8. Nature. 2005 Sep 8;437(7056):207-8 [PMID: 16148924]
  9. Cell. 2012 Nov 21;151(5):1126-37 [PMID: 23178128]
  10. PLoS One. 2012;7(5):e37612 [PMID: 22624055]
  11. Biol Lett. 2010 Dec 23;6(6):744-7 [PMID: 20462889]
  12. J Comp Neurol. 2020 Oct 15;528(15):2499-2522 [PMID: 32190905]
  13. Front Mol Neurosci. 2015 Dec 16;8:75 [PMID: 26733799]
  14. BMC Neurosci. 2010 Apr 30;11:58 [PMID: 20433748]
  15. Ann N Y Acad Sci. 1999 Jun 29;877:242-57 [PMID: 10415653]
  16. Neuropharmacology. 2019 Sep 15;156:107451 [PMID: 30502376]
  17. Nature. 2011 Feb 10;470(7333):221-6 [PMID: 21307935]
  18. Horm Behav. 2012 Apr;61(4):496-503 [PMID: 22285646]
  19. J Comp Neurol. 2008 Jun 1;508(4):615-47 [PMID: 18381599]
  20. Endocrinology. 2002 Jul;143(7):2534-40 [PMID: 12072385]
  21. Anim Behav. 1999 Mar;57(3):545-555 [PMID: 10196044]
  22. Nat Rev Neurosci. 2016 Oct 18;17(11):692-704 [PMID: 27752072]
  23. Int Rev Cell Mol Biol. 2015;320:41-73 [PMID: 26614871]
  24. Physiol Behav. 2012 Jan 18;105(2):489-92 [PMID: 21939680]
  25. Behav Brain Res. 2017 Jan 15;317:188-203 [PMID: 27609648]
  26. J Comp Neurol. 2017 Feb 15;525(3):610-638 [PMID: 27507772]
  27. Annu Rev Neurosci. 2012;35:133-51 [PMID: 22524786]
  28. Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2:17194-9 [PMID: 23045669]
  29. Proc Biol Sci. 2018 Nov 14;285(1891): [PMID: 30429304]
  30. Front Behav Neurosci. 2018 Nov 21;12:267 [PMID: 30524252]
  31. J Neurosci. 2012 Feb 15;32(7):2241-7 [PMID: 22396398]
  32. J Neuroendocrinol. 2013 Jul;25(7):644-54 [PMID: 23631684]
  33. Front Behav Neurosci. 2016 May 13;10:93 [PMID: 27242462]
  34. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21176-80 [PMID: 21106763]
  35. J Comp Neurol. 2004 Dec 6;480(2):204-33 [PMID: 15514931]
  36. Nat Neurosci. 2020 Nov;23(11):1317-1328 [PMID: 33046890]
  37. J Physiol Paris. 2016 Oct;110(3 Pt B):224-232 [PMID: 27915075]
  38. Int Rev Cell Mol Biol. 2008;268:1-37 [PMID: 18703402]
  39. Horm Behav. 2019 Jan;107:83-95 [PMID: 30578818]
  40. J Theor Biol. 1974 Sep;47(1):223-43 [PMID: 4477626]
  41. Integr Comp Biol. 2023 Aug 23;63(2):428-443 [PMID: 37312279]
  42. ACS Chem Neurosci. 2018 Aug 15;9(8):1951-1962 [PMID: 29522313]
  43. Horm Behav. 2013 Aug;64(3):430-8 [PMID: 23838629]
  44. J Comp Neurol. 2011 Dec 15;519(18):3599-639 [PMID: 21800319]
  45. Neuroscience. 2020 Oct 15;446:199-212 [PMID: 32707292]
  46. Physiol Behav. 2008 Oct 20;95(3):457-63 [PMID: 18675837]
  47. Integr Comp Biol. 2021 Jul 23;61(1):249-268 [PMID: 33963407]
  48. Integr Comp Biol. 2015 Aug;55(2):294-306 [PMID: 26037297]
  49. Integr Comp Biol. 2013 Dec;53(6):938-50 [PMID: 23613320]
  50. Biol Lett. 2011 Aug 23;7(4):487-8 [PMID: 21525054]
  51. Mol Cell Endocrinol. 2024 Oct 1;592:112319 [PMID: 38925266]
  52. Nature. 2014 May 29;509(7502):627-32 [PMID: 24739975]
  53. J Exp Biol. 2017 Dec 15;220(Pt 24):4689-4702 [PMID: 29074701]

Grants

  1. S.U.R.F./University of Houston
  2. National Research University Fund startup R0503962/University of Houston
  3. Beckman Young Investigator Award/Arnold and Mabel Beckman Foundation

MeSH Term

Animals
Aggression
Female
Cichlids
Male
Sex Characteristics
Brain
Behavior, Animal
Social Behavior

Word Cloud

Created with Highcharts 10.0.0aggressionneuralburtonidifferencesmirrorspeciesassaybehaviorpS6malessocialfishsexfemaleactivationpatternsregionsaggressiveimmunoreactivityATndominancecichlidbehavioralmalebrainSBNmarkerresponseventralhomologmammalsfemaleshigheralsoAggressionubiquitousamongcanfunctionmaintainhierarchiesAfricanAstatotilapiaidealstudystudyingduehierarchyrobustrepertoireunderstandpotentialcharacterizedquantifiednetworkinvestigatereflectedimmunohistochemistrydetectingphosphorylatedribosomephospho-S6ribosomalproteinfoundperformidenticalsex-specificbehaviorsFemalesgreaterVvparttelencephalonlateralseptumMalesanteriortuberalnucleusventromedialhypothalamusstronglyimplicatedregulationSeveralnegativecontrolsexposedimplicatingroleinhibitoryprocessessuppressingrelevantstimuluspresentMaledisplaysimilardifferentcorrespondingclustersPOArevealingfunctionalconnectivitytriggeredcontextfindingssuggestdistinctcircuitryunderlieservingfoundationfutureworkinvestigatingmolecularunderpinningsrevealfundamentalinsightsunderstandingSexsubstrate

Similar Articles

Cited By

No available data.