Computational design of CDK1 inhibitors with enhanced target affinity and drug-likeness using deep-learning framework.

Zuokun Lu, Jiayuan Han, Yibo Ji, Bingrui Li, Aili Zhang
Author Information
  1. Zuokun Lu: Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China.
  2. Jiayuan Han: Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China.
  3. Yibo Ji: Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China.
  4. Bingrui Li: Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China.
  5. Aili Zhang: Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China.

Abstract

Cyclin Dependent Kinase 1 (CDK1) plays a crucial role in cell cycle regulation, and dysregulation of its activity has been implicated in various cancers. Although several CDK1 inhibitors are currently in clinical trials, none have yet been approved for therapeutic use. This research utilized deep learning techniques, specifically Recurrent Neural Networks with Long Short-Term Memory (LSTM), to generate potential CDK1 inhibitors. Molecular docking, evaluation of molecular properties, and molecular dynamics simulations were conducted to identify the most promising candidates. The results showed that the generated ligands exhibited substantial improvements in target affinity and drug-likeness. Molecular docking results showed that the generated ligands had an average binding affinity of -10.65 ± 0.877 kcal/mol towards CDK1. The Quantitative Estimate of Drug-likeness (QED) values for the generated ligands averaged 0.733 ± 0.10, significantly higher than the 0.547 ± 0.15 observed for known CDK1 inhibitors (p < 0.001). Molecular dynamics simulations further confirmed the stability and favorable interactions of the selected ligands with the CDK1 complex. The identification of novel CDK1 inhibitors with improved binding affinities and drug-likeness properties could potentially fill the gap in the ongoing development of CDK inhibitors. However, it is imperative to note that extensive experimental validation is required prior to advancing these generated ligands to subsequent stages of drug development.

Keywords

References

  1. Int J Mol Sci. 2016 Jan 26;17(2): [PMID: 26821017]
  2. Front Pharmacol. 2021 Dec 17;12:796534 [PMID: 34975493]
  3. Acc Chem Res. 2021 Jan 19;54(2):263-270 [PMID: 33370107]
  4. Front Microbiol. 2023 Jun 23;14:1194794 [PMID: 37448573]
  5. Signal Transduct Target Ther. 2020 Mar 6;5(1):15 [PMID: 32296035]
  6. NPJ Precis Oncol. 2023 Jun 13;7(1):58 [PMID: 37311884]
  7. Curr Opin Genet Dev. 2007 Feb;17(1):60-5 [PMID: 17208431]
  8. Nat Chem. 2012 Jan 24;4(2):90-8 [PMID: 22270643]
  9. Cells. 2022 Mar 07;11(5): [PMID: 35269537]
  10. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]
  11. J Chem Inf Model. 2014 Dec 22;54(12):3284-301 [PMID: 25382374]
  12. Front Pharmacol. 2021 Jul 28;12:660313 [PMID: 34393769]
  13. Curr Top Med Chem. 2020;20(17):1535-1563 [PMID: 32416692]
  14. Nat Rev Cancer. 2009 Mar;9(3):153-66 [PMID: 19238148]
  15. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  16. J Chem Inf Model. 2021 Aug 23;61(8):3891-3898 [PMID: 34278794]
  17. Molecules. 2022 Dec 26;28(1): [PMID: 36615401]
  18. BMC Res Notes. 2012 Jul 23;5:367 [PMID: 22824207]
  19. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  20. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  21. Nature. 2023 Apr;616(7958):673-685 [PMID: 37100941]
  22. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  23. Mol Biol (Mosk). 2008 Jul-Aug;42(4):701-6 [PMID: 18856071]
  24. Med Chem. 2013 Mar;9(2):163-76 [PMID: 23016542]
  25. Phys Chem Chem Phys. 2019 Jul 17;21(28):15463-15470 [PMID: 31257373]
  26. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  27. Curr Cancer Drug Targets. 2023;23(8):603-619 [PMID: 36959160]
  28. J Pharmacol Toxicol Methods. 2000 Jul-Aug;44(1):235-49 [PMID: 11274893]
  29. J Med Chem. 2021 Oct 14;64(19):14011-14027 [PMID: 34533311]
  30. Mol Inform. 2018 Jan;37(1-2): [PMID: 29095571]
  31. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954 [PMID: 27899562]
  32. Nat Rev Mol Cell Biol. 2008 Nov;9(11):910-6 [PMID: 18813291]
  33. J Cheminform. 2011 Oct 07;3:33 [PMID: 21982300]
  34. Bioorg Med Chem. 2022 Oct 15;72:116994 [PMID: 36087428]
  35. N Engl J Med. 2016 Nov 17;375(20):1925-1936 [PMID: 27959613]
  36. Clin Transl Oncol. 2022 Feb;24(2):161-192 [PMID: 34363593]
  37. Nucleic Acids Res. 2021 Jul 2;49(W1):W530-W534 [PMID: 33950214]
  38. ChemMedChem. 2016 Jun 6;11(11):1117-21 [PMID: 27218427]
  39. Nat Rev Clin Oncol. 2016 Jul;13(7):417-30 [PMID: 27030077]
  40. Comput Biol Med. 2021 Dec;139:104967 [PMID: 34739968]
  41. Future Med Chem. 2018 Jun 1;10(11):1369-1388 [PMID: 29846081]
  42. J Chem Inf Model. 2023 Aug 28;63(16):5056-5065 [PMID: 37555591]
  43. Sci Rep. 2024 Jul 3;14(1):15315 [PMID: 38961127]
  44. Mol Inform. 2018 Jan;37(1-2): [PMID: 29319225]

Word Cloud

Created with Highcharts 10.0.0CDK1inhibitorsligandsMoleculargenerateddockingsimulationsaffinitydrug-likenessCyclin1Recurrentmolecularpropertiesdynamicsresultsshowedtargetbinding0developmentDependentKinaseplayscrucialrolecellcycleregulationdysregulationactivityimplicatedvariouscancersAlthoughseveralcurrentlyclinicaltrialsnoneyetapprovedtherapeuticuseresearchutilizeddeeplearningtechniquesspecificallyNeuralNetworksLongShort-TermMemoryLSTMgeneratepotentialevaluationconductedidentifypromisingcandidatesexhibitedsubstantialimprovementsaverage-1065 ± 0877 kcal/moltowardsQuantitativeEstimateDrug-likenessQEDvaluesaveraged733 ± 010significantlyhigher547 ± 015observedknownp < 0001confirmedstabilityfavorableinteractionsselectedcomplexidentificationnovelimprovedaffinitiespotentiallyfillgapongoingCDKHoweverimperativenoteextensiveexperimentalvalidationrequiredprioradvancingsubsequentstagesdrugComputationaldesignenhancedusingdeep-learningframeworkdependentkinaseMDneuralnetwork

Similar Articles

Cited By