Applying AI to Structured Real-World Data for Pharmacovigilance Purposes: Scoping Review.

Stella Dimitsaki, Pantelis Natsiavas, Marie-Christine Jaulent
Author Information
  1. Stella Dimitsaki: Laboratoire d'Informatique M��dicale et d'Ing��nierie des Connaissances en e-Sant�� - LIMICS, Inserm, Universit�� Sorbonne Paris-Nord, Sorbonne Universit��, Paris, France. ORCID
  2. Pantelis Natsiavas: Centre for Research and Development Hellas, Institute of Applied Biosciences, Thessaloniki, Greece. ORCID
  3. Marie-Christine Jaulent: Laboratoire d'Informatique M��dicale et d'Ing��nierie des Connaissances en e-Sant�� - LIMICS, Inserm, Universit�� Sorbonne Paris-Nord, Sorbonne Universit��, Paris, France. ORCID

Abstract

BACKGROUND: Artificial intelligence (AI) applied to real-world data (RWD; eg, electronic health care records) has been identified as a potentially promising technical paradigm for the pharmacovigilance field. There are several instances of AI approaches applied to RWD; however, most studies focus on unstructured RWD (conducting natural language processing on various data sources, eg, clinical notes, social media, and blogs). Hence, it is essential to investigate how AI is currently applied to structured RWD in pharmacovigilance and how new approaches could enrich the existing methodology.
OBJECTIVE: This scoping review depicts the emerging use of AI on structured RWD for pharmacovigilance purposes to identify relevant trends and potential research gaps.
METHODS: The scoping review methodology is based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. We queried the MEDLINE database through the PubMed search engine. Relevant scientific manuscripts published from January 2010 to January 2024 were retrieved. The included studies were "mapped" against a set of evaluation criteria, including applied AI approaches, code availability, description of the data preprocessing pipeline, clinical validation of AI models, and implementation of trustworthy AI criteria following the guidelines of the FUTURE (Fairness, Universality, Traceability, Usability, Robustness, and Explainability)-AI initiative.
RESULTS: The scoping review ultimately yielded 36 studies. There has been a significant increase in relevant studies after 2019. Most of the articles focused on adverse drug reaction detection procedures (23/36, 64%) for specific adverse effects. Furthermore, a substantial number of studies (34/36, 94%) used nonsymbolic AI approaches, emphasizing classification tasks. Random forest was the most popular machine learning approach identified in this review (17/36, 47%). The most common RWD sources used were electronic health care records (28/36, 78%). Typically, these data were not available in a widely acknowledged data model to facilitate interoperability, and they came from proprietary databases, limiting their availability for reproducing results. On the basis of the evaluation criteria classification, 10% (4/36) of the studies published their code in public registries, 16% (6/36) tested their AI models in clinical environments, and 36% (13/36) provided information about the data preprocessing pipeline. In addition, in terms of trustworthy AI, 89% (32/36) of the studies followed at least half of the trustworthy AI initiative guidelines. Finally, selection and confounding biases were the most common biases in the included studies.
CONCLUSIONS: AI, along with structured RWD, constitutes a promising line of work for drug safety and pharmacovigilance. However, in terms of AI, some approaches have not been examined extensively in this field (such as explainable AI and causal AI). Moreover, it would be helpful to have a data preprocessing protocol for RWD to support pharmacovigilance processes. Finally, because of personal data sensitivity, evaluation procedures have to be investigated further.

Keywords

References

  1. Sci Rep. 2017 Oct 9;7(1):12839 [PMID: 28993650]
  2. Nat Med. 2018 Nov;24(11):1716-1720 [PMID: 30349085]
  3. Eur J Clin Pharmacol. 2020 Mar;76(3):439-448 [PMID: 31832731]
  4. Artif Intell Med. 2021 Apr;114:102052 [PMID: 33875163]
  5. Expert Opin Drug Saf. 2018 Jul;17(7):681-695 [PMID: 29952667]
  6. BMC Med Inform Decis Mak. 2023 Jun 11;23(1):105 [PMID: 37301967]
  7. Syst Rev. 2016 Dec 5;5(1):210 [PMID: 27919275]
  8. J Am Heart Assoc. 2020 Dec;9(23):e019628 [PMID: 33241727]
  9. Front Pharmacol. 2018 Apr 30;9:435 [PMID: 29760661]
  10. J Am Med Inform Assoc. 2019 Dec 1;26(12):1560-1565 [PMID: 31390471]
  11. BMC Med Inform Decis Mak. 2019 Jan 10;19(1):7 [PMID: 30630486]
  12. Int J Environ Res Public Health. 2021 Mar 05;18(5): [PMID: 33807714]
  13. Front Endocrinol (Lausanne). 2022 Oct 13;13:1011492 [PMID: 36313772]
  14. Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:30-39 [PMID: 33283213]
  15. Circ Cardiovasc Qual Outcomes. 2016 Nov;9(6):621-628 [PMID: 28263937]
  16. Nat Med. 2022 Oct;28(10):2207-2215 [PMID: 35995955]
  17. NPJ Digit Med. 2021 Dec 8;4(1):167 [PMID: 34880410]
  18. JAMA Netw Open. 2021 May 3;4(5):e2110703 [PMID: 34019087]
  19. Eur J Oncol Nurs. 2022 Feb;56:102066 [PMID: 34861529]
  20. Front Pharmacol. 2018 Jun 06;9:594 [PMID: 29928230]
  21. J Am Med Inform Assoc. 2021 Jul 14;28(7):1507-1517 [PMID: 33712852]
  22. AMIA Annu Symp Proc. 2023 Apr 29;2022:1227-1236 [PMID: 37128413]
  23. J Affect Disord. 2021 Dec 1;295:1310-1318 [PMID: 34706445]
  24. Comput Methods Programs Biomed. 2021 Nov;212:106415 [PMID: 34715520]
  25. AMIA Annu Symp Proc. 2015 Nov 05;2015:1371-80 [PMID: 26958278]
  26. Front Big Data. 2022 Nov 15;5:1059088 [PMID: 36458283]
  27. Drug Saf. 2023 Dec;46(12):1335-1352 [PMID: 37804398]
  28. Nat Commun. 2022 Oct 20;13(1):6039 [PMID: 36266298]
  29. PLoS Comput Biol. 2021 Jul 6;17(7):e1009053 [PMID: 34228716]
  30. Nat Commun. 2022 Nov 14;13(1):6921 [PMID: 36376286]
  31. BMC Med Inform Decis Mak. 2016 Jul 21;16 Suppl 2:71 [PMID: 27459993]
  32. PLoS One. 2018 Nov 21;13(11):e0207749 [PMID: 30462745]
  33. J Korean Med Sci. 2021 Aug 09;36(31):e198 [PMID: 34402232]
  34. CPT Pharmacometrics Syst Pharmacol. 2023 Nov;12(11):1764-1776 [PMID: 37503916]
  35. Biostatistics. 2020 Oct 1;21(4):758-774 [PMID: 30851046]
  36. Front Pharmacol. 2019 May 17;10:415 [PMID: 31156424]
  37. Int J Med Inform. 2023 Oct;178:105177 [PMID: 37591010]
  38. BioData Min. 2015 Mar 25;8:12 [PMID: 25829948]
  39. Cardiovasc Toxicol. 2022 Feb;22(2):130-140 [PMID: 34792740]
  40. AMIA Annu Symp Proc. 2018 Apr 16;2017:1625-1634 [PMID: 29854233]
  41. BMJ Open. 2021 May 26;11(5):e043964 [PMID: 34039572]
  42. Pharm Stat. 2021 Jul;20(4):752-764 [PMID: 33619894]
  43. Ann Intern Med. 2010 Nov 2;153(9):600-6 [PMID: 21041580]
  44. Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4 [PMID: 38083643]
  45. JCO Clin Cancer Inform. 2022 Nov;6:e2100191 [PMID: 36417684]
  46. JAMA Netw Open. 2022 Dec 1;5(12):e2248559 [PMID: 36574245]
  47. BMJ. 2021 Mar 29;372:n160 [PMID: 33781993]
  48. JMIR Mhealth Uhealth. 2021 Dec 2;9(12):e27024 [PMID: 34860677]
  49. Basic Clin Pharmacol Toxicol. 2023 Mar;132(3):233-241 [PMID: 36541054]
  50. Front Pharmacol. 2023 May 23;14:1176096 [PMID: 37288110]
  51. J Biomed Semantics. 2017 Aug 22;8(1):29 [PMID: 28830518]
  52. BMC Syst Biol. 2018 Nov 22;12(Suppl 6):105 [PMID: 30463545]
  53. Expert Opin Drug Saf. 2017 Jul;16(7):761-767 [PMID: 28447485]
  54. J Pers Med. 2020 Dec 18;10(4): [PMID: 33352870]
  55. Lancet Digit Health. 2022 Jul;4(7):e532-e541 [PMID: 35589549]

MeSH Term

Pharmacovigilance
Artificial Intelligence
Humans
Electronic Health Records
Natural Language Processing

Word Cloud

Created with Highcharts 10.0.0AIdataRWDstudiespharmacovigilanceapproachesreviewappliedscopingclinicalstructuredmethodologyevaluationcriteriapreprocessingtrustworthydrugintelligencereal-worldegelectronichealthcarerecordsidentifiedpromisingfieldsourcesrelevantpublishedJanuaryincludedcodeavailabilitypipelinemodelsguidelinesinitiativeadverseproceduresusedclassificationmachinelearningcommontermsFinallybiasessafetyBACKGROUND:ArtificialpotentiallytechnicalparadigmseveralinstanceshoweverfocusunstructuredconductingnaturallanguageprocessingvariousnotessocialmediablogsHenceessentialinvestigatecurrentlynewenrichexistingOBJECTIVE:depictsemergingusepurposesidentifytrendspotentialresearchgapsMETHODS:basedPRISMAPreferredReportingItemsSystematicReviewsMeta-AnalysesqueriedMEDLINEdatabasePubMedsearchengineRelevantscientificmanuscripts20102024retrieved"mapped"setincludingdescriptionvalidationimplementationfollowingFUTUREFairnessUniversalityTraceabilityUsabilityRobustnessExplainability-AIRESULTS:ultimatelyyielded36significantincrease2019articlesfocusedreactiondetection23/3664%specificeffectsFurthermoresubstantialnumber34/3694%nonsymbolicemphasizingtasksRandomforestpopularapproach17/3647%28/3678%Typicallyavailablewidelyacknowledgedmodelfacilitateinteroperabilitycameproprietarydatabaseslimitingreproducingresultsbasis10%4/36publicregistries16%6/36testedenvironments36%13/36providedinformationaddition89%32/36followedleasthalfselectionconfoundingCONCLUSIONS:alongconstituteslineworkHoweverexaminedextensivelyexplainablecausalMoreoverhelpfulprotocolsupportprocessespersonalsensitivityinvestigatedfurtherApplyingStructuredReal-WorldDataPharmacovigilancePurposes:ScopingReviewartificial

Similar Articles

Cited By

No available data.