A pan-immune panorama of bacterial pneumonia revealed by a large-scale single-cell transcriptome atlas.

Kun Xiao, Yan Cao, Zhihai Han, Yuxiang Zhang, Laurence Don Wai Luu, Liang Chen, Peng Yan, Wei Chen, Jiaxing Wang, Ying Liang, Xin Shi, Xiuli Wang, Fan Wang, Ye Hu, Zhengjun Wen, Yong Chen, Yuwei Yang, Haotian Yu, Lixin Xie, Yi Wang
Author Information
  1. Kun Xiao: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China. 13716608331@163.com.
  2. Yan Cao: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  3. Zhihai Han: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  4. Yuxiang Zhang: Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100037, P.R. China.
  5. Laurence Don Wai Luu: School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
  6. Liang Chen: Respiratory and Critical Care Medicine department, Beijing Jingmei Group, General Hospial, Beijing, 102308, P.R. China.
  7. Peng Yan: Department of Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, P.R. China.
  8. Wei Chen: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  9. Jiaxing Wang: Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100037, P.R. China.
  10. Ying Liang: Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, P.R. China.
  11. Xin Shi: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  12. Xiuli Wang: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  13. Fan Wang: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  14. Ye Hu: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  15. Zhengjun Wen: Respiratory and Critical Care Medicine department, Beijing Jingmei Group, General Hospial, Beijing, 102308, P.R. China.
  16. Yong Chen: Department of Pulmonary and Critical Care Medicine, Anzhen hospital afflicted to Capital medical university, Beijing, 100029, P.R. China.
  17. Yuwei Yang: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
  18. Haotian Yu: The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China. yht200725@163.com.
  19. Lixin Xie: College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China. xielx301@126.com.
  20. Yi Wang: Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China. wildwolf0101@163.com. ORCID

Abstract

Bacterial pneumonia is a significant public health burden, contributing to substantial morbidity, mortality, and healthcare costs. Current therapeutic strategies beyond antibiotics and adjuvant therapies are limited, highlighting the need for a deeper understanding of the disease pathogenesis. Here, we employed single-cell RNA sequencing of 444,146 bronchoalveolar lavage fluid cells (BALFs) from a large cohort of 74 individuals, including 58 patients with mild (n = 22) and severe (n = 36) diseases as well as 16 healthy donors. Enzyme-linked immunosorbent and histological assays were applied for validation within this cohort. The heterogeneity of immune responses in bacterial pneumonia was observed, with distinct immune cell profiles related to disease severity. Severe bacterial pneumonia was marked by an inflammatory cytokine storm resulting from systemic upregulation of S100A8/A9 and CXCL8, primarily due to specific macrophage and neutrophil subsets. In contrast, mild bacterial pneumonia exhibits an effective humoral immune response characterized by the expansion of T follicular helper and T helper 2 cells, facilitating B cell activation and antibody production. Although both disease groups display T cell exhaustion, mild cases maintained robust cytotoxic CD8T cell function, potentially reflecting a compensatory mechanism. Dysregulated neutrophil and macrophage responses contributed significantly to the pathogenesis of severe disease. Immature neutrophils promote excessive inflammation and suppress T cell activation, while a specific macrophage subset (Macro_03_M1) displaying features akin to myeloid-derived suppressor cells (M-MDSCs) suppress T cells and promote inflammation. Together, these findings highlight potential therapeutic targets for modulating immune responses and improving clinical outcomes in bacterial pneumonia.

References

  1. Sci Transl Med. 2018 Apr 4;10(435): [PMID: 29618559]
  2. Cell. 2018 Nov 1;175(4):998-1013.e20 [PMID: 30388456]
  3. Mol Aspects Med. 2021 Oct;81:100996 [PMID: 34284874]
  4. Gastroenterology. 2013 Feb;144(2):392-401 [PMID: 23103614]
  5. Lancet Reg Health West Pac. 2023 Nov 20;42:100968 [PMID: 38022712]
  6. Chest. 2012 Dec;142(6):1425-1432 [PMID: 22911225]
  7. Imeta. 2024 Jul 23;3(4):e226 [PMID: 39135683]
  8. Cell Host Microbe. 2021 Feb 10;29(2):165-178.e8 [PMID: 33340449]
  9. J Immunol. 2020 Oct 15;205(8):2169-2187 [PMID: 32948687]
  10. Respirology. 2010 Apr;15(3):433-50 [PMID: 20415982]
  11. Nat Rev Immunol. 2018 Feb;18(2):121-133 [PMID: 29082915]
  12. Crit Rev Immunol. 2013;33(3):203-18 [PMID: 23756244]
  13. Immunity. 2019 May 21;50(5):1132-1148 [PMID: 31117010]
  14. Signal Transduct Target Ther. 2021 Mar 6;6(1):110 [PMID: 33677468]
  15. Eur Respir J. 2011 Jun;37(6):1431-8 [PMID: 20884746]
  16. Eur Respir J. 2019 Aug 22;54(2): [PMID: 31221805]
  17. J Exp Med. 2021 Sep 6;218(9): [PMID: 34292313]
  18. Clin Infect Dis. 2007 Mar 1;44 Suppl 2:S27-72 [PMID: 17278083]
  19. Cell Rep. 2019 Dec 24;29(13):4236-4244.e3 [PMID: 31875535]
  20. Lancet Microbe. 2023 May;4(5):e330-e339 [PMID: 37001538]
  21. Nat Med. 2023 Jun;29(6):1563-1577 [PMID: 37291214]
  22. Crit Care. 2023 Mar 1;27(1):79 [PMID: 36859478]
  23. Signal Transduct Target Ther. 2023 Dec 29;8(1):467 [PMID: 38155175]
  24. Respir Res. 2015 Feb 07;16:15 [PMID: 25849726]
  25. Intensive Care Med. 2012 Feb;38(2):256-62 [PMID: 22113815]
  26. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  27. Infect Immun. 2023 May 16;91(5):e0002923 [PMID: 37039643]
  28. Cell. 2021 Apr 1;184(7):1895-1913.e19 [PMID: 33657410]
  29. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  30. Physiol Rev. 2018 Jul 1;98(3):1417-1464 [PMID: 29767563]
  31. J Infect. 2023 May;86(5):421-438 [PMID: 37003521]
  32. Sci Immunol. 2021 Jan 21;6(55): [PMID: 33478949]
  33. Front Immunol. 2021 Oct 19;12:689866 [PMID: 34737734]
  34. MedComm (2020). 2024 Oct 13;5(10):e748 [PMID: 39399649]
  35. Physiol Rev. 2016 Jan;96(1):19-53 [PMID: 26582515]
  36. Am J Respir Crit Care Med. 2019 Oct 1;200(7):e45-e67 [PMID: 31573350]
  37. Signal Transduct Target Ther. 2023 Oct 18;8(1):398 [PMID: 37848421]
  38. J Leukoc Biol. 2018 Aug;104(2):301-312 [PMID: 29668063]
  39. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  40. Am J Respir Cell Mol Biol. 2010 Jul;43(1):5-16 [PMID: 19738160]
  41. Genome Biol. 2019 Mar 19;20(1):59 [PMID: 30890159]
  42. Nature. 2018 Dec;564(7735):268-272 [PMID: 30479382]
  43. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  44. Genome Biol. 2024 Jan 3;25(1):9 [PMID: 38172966]
  45. Gut. 2023 Jan;72(1):153-167 [PMID: 35361683]
  46. Intensive Care Med. 2023 May;49(5):530-544 [PMID: 37072597]
  47. Eur Respir J. 2023 Apr 3;61(4): [PMID: 37012080]
  48. Clin Microbiol Rev. 2019 May 29;32(3): [PMID: 31142498]
  49. Eur Respir Rev. 2022 Dec 14;31(166): [PMID: 36517046]
  50. Eur Respir J. 2017 Jul 13;50(1): [PMID: 28705941]

MeSH Term

Humans
Pneumonia, Bacterial
Female
Male
Transcriptome
Single-Cell Analysis
Calgranulin A
Calgranulin B
Middle Aged
Interleukin-8
Bronchoalveolar Lavage Fluid
Aged
Neutrophils
Adult
Macrophages

Chemicals

Calgranulin A
Calgranulin B
S100A8 protein, human
S100A9 protein, human
CXCL8 protein, human
Interleukin-8

Word Cloud

Created with Highcharts 10.0.0pneumoniabacterialcellTdiseasecellsimmunemildresponsesmacrophagetherapeuticpathogenesissingle-cellcohortseverespecificneutrophilhelperactivationpromoteinflammationsuppressBacterialsignificantpublichealthburdencontributingsubstantialmorbiditymortalityhealthcarecostsCurrentstrategiesbeyondantibioticsadjuvanttherapieslimitedhighlightingneeddeeperunderstandingemployedRNAsequencing444146bronchoalveolarlavagefluidBALFslarge74individualsincluding58patientsn = 22n = 36diseaseswell16healthydonorsEnzyme-linkedimmunosorbenthistologicalassaysappliedvalidationwithinheterogeneityobserveddistinctprofilesrelatedseveritySeveremarkedinflammatorycytokinestormresultingsystemicupregulationS100A8/A9CXCL8primarilyduesubsetscontrastexhibitseffectivehumoralresponsecharacterizedexpansionfollicular2facilitatingBantibodyproductionAlthoughgroupsdisplayexhaustioncasesmaintainedrobustcytotoxicCD8TfunctionpotentiallyreflectingcompensatorymechanismDysregulatedcontributedsignificantlyImmatureneutrophilsexcessivesubsetMacro_03_M1displayingfeaturesakinmyeloid-derivedsuppressorM-MDSCsTogetherfindingshighlightpotentialtargetsmodulatingimprovingclinicaloutcomespan-immunepanoramarevealedlarge-scaletranscriptomeatlas

Similar Articles

Cited By