Higher amplitudes of visual networks are associated with trait- but not state-depression.

Wei Zhang, Rosie Dutt, Daphne Lew, Deanna M Barch, Janine D Bijsterbosch
Author Information
  1. Wei Zhang: Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA. ORCID
  2. Rosie Dutt: Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
  3. Daphne Lew: Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, MO, USA.
  4. Deanna M Barch: Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
  5. Janine D Bijsterbosch: Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.

Abstract

Despite depression being a leading cause of global disability, neuroimaging studies have struggled to identify replicable neural correlates of depression or explain limited variance. This challenge may, in part, stem from the intertwined state (current symptoms; variable) and trait (general propensity; stable) experiences of depression.Here, we sought to disentangle state from trait experiences of depression by leveraging a longitudinal cohort and stratifying individuals into four groups: those in remission ('trait depression group'), those with large longitudinal severity changes in depression symptomatology ('state depression group'), and their respective matched control groups (total analytic = 1030). We hypothesized that spatial network organization would be linked to trait depression due to its temporal stability, whereas functional connectivity between networks would be more sensitive to state-dependent depression symptoms due to its capacity to fluctuate.We identified 15 large-scale probabilistic functional networks from resting-state fMRI data and performed group comparisons on the amplitude, connectivity, and spatial overlap between these networks, using matched control participants as reference. Our findings revealed higher amplitude in visual networks for the trait depression group at the time of remission, in contrast to controls. This observation may suggest altered visual processing in individuals predisposed to developing depression over time. No significant group differences were observed in any other network measures for the trait-control comparison, nor in any measures for the state-control comparison. These results underscore the overlooked contribution of visual networks to the psychopathology of depression and provide evidence for distinct neural correlates between state and trait experiences of depression.

Keywords

References

  1. J Psychiatry Neurosci. 2019 Jan 01;44(1):45-53 [PMID: 30565905]
  2. Mol Psychiatry. 2017 Jun;22(6):900-909 [PMID: 27137745]
  3. Brain Imaging Behav. 2022 Feb;16(1):518-531 [PMID: 34331655]
  4. JAMA Psychiatry. 2022 Sep 1;79(9):879-888 [PMID: 35895072]
  5. Transl Psychiatry. 2015 Feb 17;5:e508 [PMID: 25689569]
  6. PLoS Med. 2015 Mar 31;12(3):e1001779 [PMID: 25826379]
  7. JAMA. 2017 Apr 18;317(15):1517 [PMID: 28418490]
  8. Biol Psychiatry. 2009 May 1;65(9):792-800 [PMID: 19058788]
  9. Neuropsychopharmacology. 2011 Feb;36(3):684-91 [PMID: 21085111]
  10. Neuropsychopharmacology. 2017 Jul;42(8):1729-1738 [PMID: 28294134]
  11. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Mar;7(3):276-284 [PMID: 34363999]
  12. Front Psychiatry. 2021 Feb 16;12:618805 [PMID: 33679477]
  13. Brain Sci. 2022 Nov 17;12(11): [PMID: 36421888]
  14. Proc Natl Acad Sci U S A. 2021 Oct 5;118(40): [PMID: 34593640]
  15. Dev Neurosci. 2016;38(2):115-23 [PMID: 27198667]
  16. Nature. 2020 Jun;582(7810):84-88 [PMID: 32483374]
  17. Hum Brain Mapp. 2022 Jan;43(1):341-351 [PMID: 32198905]
  18. Sci Rep. 2022 Dec 9;12(1):21337 [PMID: 36494495]
  19. Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8582-8590 [PMID: 30962366]
  20. Neuroimage Clin. 2021;32:102871 [PMID: 34749291]
  21. Brain Sci. 2021 Dec 10;11(12): [PMID: 34942936]
  22. Am J Geriatr Psychiatry. 2017 Oct;25(10):1135-1149 [PMID: 28457805]
  23. J Psychiatr Res. 2019 Mar;110:172-178 [PMID: 30654314]
  24. Nature. 2022 Mar;603(7902):654-660 [PMID: 35296861]
  25. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Jun 8;100:109889 [PMID: 32067960]
  26. Lancet Psychiatry. 2016 May;3(5):472-80 [PMID: 27150382]
  27. Am J Psychiatry. 2017 Oct 1;174(10):971-979 [PMID: 28618857]
  28. Brain. 2014 Jun;137(Pt 6):1830-7 [PMID: 24740986]
  29. Am J Psychiatry. 2021 Dec;178(12):1119-1128 [PMID: 34645274]
  30. Dev Cogn Neurosci. 2022 Dec;58:101161 [PMID: 36242901]
  31. Hum Brain Mapp. 2018 Feb;39(2):680-690 [PMID: 29094774]
  32. Neuroimage. 2018 Feb 1;166:400-424 [PMID: 29079522]
  33. Curr Opin Neurol. 2022 Aug 1;35(4):475-481 [PMID: 35856915]
  34. Transl Psychiatry. 2021 Oct 7;11(1):511 [PMID: 34620830]
  35. Dev Cogn Neurosci. 2024 Aug;68:101400 [PMID: 38870601]
  36. BMC Psychiatry. 2018 Oct 19;18(1):339 [PMID: 30340472]
  37. Cogn Emot. 2012;26(8):1359-70 [PMID: 22650378]
  38. Biol Psychol. 2020 Jul;154:107923 [PMID: 32592743]
  39. JAMA Psychiatry. 2015 Oct;72(10):1045-53 [PMID: 26332700]
  40. J Psychiatry Neurosci. 2021 Mar 11;46(2):E222-E231 [PMID: 33703869]
  41. Neuroimage. 2015 Apr 1;109:217-31 [PMID: 25598050]
  42. Biol Psychiatry. 2015 Feb 15;77(4):385-93 [PMID: 25444162]
  43. JAMA Psychiatry. 2018 May 1;75(5):493-502 [PMID: 29562053]
  44. Neuroimage Clin. 2019;22:101796 [PMID: 30935858]
  45. J Neurosci. 2009 Feb 4;29(5):1395-403 [PMID: 19193886]
  46. J Neurosci. 2009 Jul 15;29(28):9072-7 [PMID: 19605644]
  47. JAMA Psychiatry. 2022 May 1;79(5):464-474 [PMID: 35262657]
  48. JAMA Psychiatry. 2022 Sep 1;79(9):845-846 [PMID: 35895069]
  49. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Mar;2(2):138-148 [PMID: 28983519]
  50. J Psychiatry Neurosci. 2025 Jan 14;50(1):E31-E44 [PMID: 39809531]
  51. Neurosci Bull. 2023 Sep;39(9):1426-1438 [PMID: 36995569]
  52. J Affect Disord. 2011 Apr;130(1-2):66-74 [PMID: 21030092]
  53. Psychol Med. 2023 Dec;53(16):7512-7524 [PMID: 37154200]
  54. JAMA Psychiatry. 2015 Jun;72(6):603-11 [PMID: 25785575]
  55. J Am Acad Child Adolesc Psychiatry. 2018 Oct;57(10):775-785.e3 [PMID: 30274652]
  56. Biol Psychiatry Glob Open Sci. 2021 May 04;1(2):135-145 [PMID: 36324992]
  57. Biol Psychiatry. 2015 Jul 1;78(1):67-76 [PMID: 25483401]
  58. Nature. 2022 Sep;609(7925):109-118 [PMID: 36002572]
  59. J Psychosom Res. 2013 Jul;75(1):83-6 [PMID: 23751244]
  60. Front Psychol. 2019 Feb 11;10:245 [PMID: 30804860]
  61. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9078-9083 [PMID: 30979801]
  62. Neuroimage. 2020 Nov 15;222:117226 [PMID: 32771617]
  63. Mol Psychiatry. 2016 Jun;21(6):806-12 [PMID: 26122586]
  64. Nat Med. 2017 Jan;23(1):28-38 [PMID: 27918562]
  65. J Affect Disord. 2000 Dec;61(1-2):113-8 [PMID: 11099749]
  66. Mol Psychiatry. 2021 Nov;26(11):6747-6755 [PMID: 33863994]
  67. Front Med (Lausanne). 2022 Jul 26;9:954644 [PMID: 35957845]
  68. Neuroimage. 2023 Jan;265:119779 [PMID: 36462729]
  69. PLoS One. 2017 Jul 12;12(7):e0179638 [PMID: 28700672]
  70. Neurosci Biobehav Rev. 2015 Sep;56:330-44 [PMID: 26234819]
  71. BMC Psychiatry. 2014 Apr 10;14:107 [PMID: 24721040]
  72. Brain Imaging Behav. 2021 Jun;15(3):1279-1289 [PMID: 32734435]
  73. Mol Psychiatry. 2020 Feb;25(2):321-338 [PMID: 31745238]
  74. Neuroimage Clin. 2017 Jan 07;14:43-53 [PMID: 28138426]
  75. Neuroimage. 2019 Apr 1;189:700-714 [PMID: 30716456]
  76. Biol Psychiatry. 2016 Dec 1;80(11):849-858 [PMID: 26826874]
  77. Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6273-8 [PMID: 19329490]
  78. Elife. 2018 Feb 16;7: [PMID: 29451491]
  79. Am J Psychiatry. 2020 May 1;177(5):422-434 [PMID: 32098488]
  80. Neuroimage. 2011 Jan 15;54(2):1662-8 [PMID: 20807578]
  81. Annu Rev Clin Psychol. 2011;7:269-95 [PMID: 21166535]
  82. Hum Brain Mapp. 2022 Feb 1;43(2):816-832 [PMID: 34708477]
  83. J Am Acad Child Adolesc Psychiatry. 2015 Oct;54(10):841-8 [PMID: 26407494]
  84. Psychol Med. 2020 Apr;50(6):1020-1031 [PMID: 31084657]
  85. J Gen Intern Med. 2001 Sep;16(9):606-13 [PMID: 11556941]
  86. Cogn Affect Behav Neurosci. 2017 Apr;17(2):394-405 [PMID: 27921216]
  87. Brain. 2012 May;135(Pt 5):1498-507 [PMID: 22418737]
  88. Mol Psychiatry. 2024 Feb;29(2):317-326 [PMID: 38036604]
  89. Neuroimage Clin. 2022;34:102988 [PMID: 35298997]
  90. Neuropsychopharmacology. 2021 Jul;46(8):1510-1517 [PMID: 33958703]
  91. Transl Psychiatry. 2016 Nov 1;6(11):e935 [PMID: 27801896]
  92. Clin EEG Neurosci. 2022 Jan;53(1):37-44 [PMID: 34037471]
  93. Chin Med J (Engl). 2011 Feb;124(3):369-73 [PMID: 21362335]
  94. Elife. 2019 May 08;8: [PMID: 31066676]

Grants

  1. R01 MH128286/NIMH NIH HHS
  2. S10 OD025200/NIH HHS
  3. S10 OD030477/NIH HHS

Word Cloud

Created with Highcharts 10.0.0depressiontraitnetworksstatevisualexperiencesnetworkgroupneuroimagingneuralcorrelatesmaysymptomslongitudinalindividualsremissiongroup'matchedcontrolspatialduefunctionalconnectivityresting-statefMRIamplitudetimemeasurescomparisonDespiteleadingcauseglobaldisabilitystudiesstruggledidentifyreplicableexplainlimitedvariancechallengepartstemintertwinedcurrentvariablegeneralpropensitystableHeresoughtdisentangleleveragingcohortstratifyingfourgroups:'traitlargeseveritychangessymptomatology'staterespectivegroupstotalanalytic=1030hypothesizedorganizationlinkedtemporalstabilitywhereassensitivestate-dependentcapacityfluctuateWeidentified15large-scaleprobabilisticdataperformedcomparisonsoverlapusingparticipantsreferencefindingsrevealedhighercontrastcontrolsobservationsuggestalteredprocessingpredisposeddevelopingsignificantdifferencesobservedtrait-controlstate-controlresultsunderscoreoverlookedcontributionpsychopathologyprovideevidencedistinctHigheramplitudesassociatedtrait-state-depressionPROFUMOUKBiobankbrain

Similar Articles

Cited By