Modeling lake conductivity in the contiguous United States using spatial indexing for big spatial data.

Michael Dumelle, Jay M Ver Hoef, Amalia Handler, Ryan A Hill, Matt Higham, Anthony R Olsen
Author Information
  1. Michael Dumelle: United States Environmental Protection Agency, 200 SW 35th St, Corvallis, OR, USA.
  2. Jay M Ver Hoef: Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA.
  3. Amalia Handler: United States Environmental Protection Agency, 200 SW 35th St, Corvallis, OR, USA.
  4. Ryan A Hill: United States Environmental Protection Agency, 200 SW 35th St, Corvallis, OR, USA.
  5. Matt Higham: St. Lawrence University Department of Mathematics, Computer Science, and Statistics, Canton, NY, USA.
  6. Anthony R Olsen: United States Environmental Protection Agency, 200 SW 35th St, Corvallis, OR, USA.

Abstract

Conductivity is an important indicator of the health of aquatic ecosystems. We model large amounts of lake conductivity data collected as part of the United States Environmental Protection Agency's National Lakes Assessment using spatial indexing, a flexible and efficient approach to fitting spatial statistical models to big data sets. Spatial indexing is capable of accommodating various spatial covariance structures as well as features like random effects, geometric anisotropy, partition factors, and non-Euclidean topologies. We use spatial indexing to compare lake conductivity models and show that calcium oxide rock content, crop production, human development, precipitation, and temperature are strongly related to lake conductivity. We use this model to predict lake conductivity at hundreds of thousands of lakes distributed throughout the contiguous United States. We find that lake conductivity models fit using spatial indexing are nearly identical to lake conductivity models fit using traditional methods but are nearly 50 times faster (sample size 3,311). Spatial indexing is readily available in the spmodel package.

Keywords

References

  1. Biometrics. 1975 Jun;31(2):423-47 [PMID: 1174616]
  2. Sci Data. 2020 Jul 13;7(1):231 [PMID: 32661286]
  3. Sci Total Environ. 2023 Sep 01;889:164138 [PMID: 37182763]
  4. ISPRS J Photogramm Remote Sens. 2020 Apr;162:184-199 [PMID: 35746921]
  5. PLoS One. 2014 Feb 26;9(2):e90168 [PMID: 24587259]
  6. Science. 2016 Feb 26;351(6276):914-6 [PMID: 26917752]
  7. Sci Total Environ. 2008 Nov 15;406(1-2):131-44 [PMID: 18762321]
  8. Environ Sci Technol. 2010 Oct 1;44(19):7376-82 [PMID: 20806974]
  9. J Stat Softw. 2023 Jan 18;105(3):1-29 [PMID: 36798141]
  10. Environ Sci Technol. 2019 Apr 16;53(8):4316-4325 [PMID: 30860824]
  11. Freshw Sci. 2018 Jun 01;37:208-221 [PMID: 29963332]
  12. Nat Rev Earth Environ. 2023 Oct 31;4:770-784 [PMID: 38515734]
  13. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4453-4458 [PMID: 28396392]
  14. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E574-E583 [PMID: 29311318]
  15. Proc Natl Acad Sci U S A. 2022 Mar 1;119(9): [PMID: 35193976]
  16. Environ Int. 2004 Mar;30(1):73-85 [PMID: 14664867]
  17. J Agric Biol Environ Stat. 2019;24(3):398-425 [PMID: 31496633]
  18. Science. 2010 Jan 8;327(5962):148-9 [PMID: 20056876]
  19. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509907]
  20. PLoS One. 2023 Nov 1;18(11):e0291906 [PMID: 37910525]
  21. Ecol Appl. 2015 Jun;25(4):943-55 [PMID: 26465035]
  22. PLoS One. 2023 Mar 9;18(3):e0282524 [PMID: 36893090]
  23. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0lakeconductivityspatialindexingUnitedStatesusingmodelsdataSpatialmodelNationalbigusecontiguousfitnearlyConductivityimportantindicatorhealthaquaticecosystemslargeamountscollectedpartEnvironmentalProtectionAgency'sLakesAssessmentflexibleefficientapproachfittingstatisticalsetscapableaccommodatingvariouscovariancestructureswellfeatureslikerandomeffectsgeometricanisotropypartitionfactorsnon-Euclideantopologiescompareshowcalciumoxiderockcontentcropproductionhumandevelopmentprecipitationtemperaturestronglyrelatedpredicthundredsthousandslakesdistributedthroughoutfindidenticaltraditionalmethods50timesfastersamplesize3311readilyavailablespmodelpackageModelingModelselectionPredictionKrigingRestrictedmaximumlikelihoodestimationSalinizationcorrelationAquaticResourceSurveys

Similar Articles

Cited By