Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells.

Martin Panigaj, Tanaya Basu Roy, Elizabeth Skelly, Morgan R Chandler, Jian Wang, Srinivasan Ekambaram, Kristin Bircsak, Nikolay V Dokholyan, Kirill A Afonin
Author Information
  1. Martin Panigaj: Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.
  2. Tanaya Basu Roy: Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.
  3. Elizabeth Skelly: Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.
  4. Morgan R Chandler: MIMETAS US, INC, Gaithersburg, Maryland 20878, United States. ORCID
  5. Jian Wang: Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.
  6. Srinivasan Ekambaram: Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.
  7. Kristin Bircsak: MIMETAS US, INC, Gaithersburg, Maryland 20878, United States.
  8. Nikolay V Dokholyan: Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States. ORCID
  9. Kirill A Afonin: Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States. ORCID

Abstract

In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.

Keywords

References

  1. ACS Chem Biol. 2018 Feb 16;13(2):376-382 [PMID: 29019396]
  2. APL Bioeng. 2021 Aug 26;5(3):031511 [PMID: 34476328]
  3. Nat Commun. 2020 Jan 10;11(1):175 [PMID: 31924752]
  4. FEMS Microbiol Rev. 2006 Jan;30(1):3-16 [PMID: 16438677]
  5. Nat Biotechnol. 2016 Jun;34(6):646-51 [PMID: 27136077]
  6. Methods Mol Biol. 2023;2709:51-64 [PMID: 37572272]
  7. Nucleic Acids Res. 2010 May;38(8):2692-701 [PMID: 20194121]
  8. Nat Nanotechnol. 2010 Dec;5(12):833-42 [PMID: 21102465]
  9. Angew Chem Int Ed Engl. 2005 Jul 11;44(28):4358-61 [PMID: 15959864]
  10. ACS Nano. 2015 Jan 27;9(1):251-9 [PMID: 25521794]
  11. Chem Biol. 2013 Apr 18;20(4):619-26 [PMID: 23601651]
  12. Nature. 2007 Aug 16;448(7155):828-31 [PMID: 17700701]
  13. Angiogenesis. 2024 Feb;27(1):37-49 [PMID: 37493987]
  14. Front Oncol. 2024 Mar 15;14:1359725 [PMID: 38559556]
  15. ACS Nano. 2021 Nov 23;15(11):16957-16973 [PMID: 34677049]
  16. Small. 2017 Nov;13(42): [PMID: 28922553]
  17. Chem Rev. 2021 Nov 24;121(22):13701-13796 [PMID: 34405992]
  18. Nat Methods. 2010 Apr;7(4):291-4 [PMID: 20190761]
  19. Nano Lett. 2016 Mar 9;16(3):1726-35 [PMID: 26926528]
  20. Adv Biol (Weinh). 2021 May;5(5):e2000181 [PMID: 33107225]
  21. ACS Chem Biol. 2013 Dec 20;8(12):2649-53 [PMID: 24063403]
  22. Drugs Today (Barc). 2017 Nov;53(11):597-608 [PMID: 29451276]
  23. Comput Struct Biotechnol J. 2012 Sep 28;2:e201209002 [PMID: 24688643]
  24. Nucleic Acids Res. 2013 Feb 1;41(4):2541-51 [PMID: 23275562]
  25. J Mol Biol. 2012 May 25;419(1-2):41-60 [PMID: 22406676]
  26. Nature. 2009 Sep 3;461(7260):104-8 [PMID: 19693014]
  27. Nat Commun. 2018 Oct 2;9(1):4042 [PMID: 30279442]
  28. Science. 2017 Feb 24;355(6327):836-842 [PMID: 28232577]
  29. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6800-4 [PMID: 23569285]
  30. Nat Nanotechnol. 2014 Sep;9(9):693-7 [PMID: 25086603]
  31. Nature. 2009 Oct 15;461(7266):997-1001 [PMID: 19749742]
  32. Elife. 2019 Oct 17;8: [PMID: 31621581]
  33. Lancet. 2020 Sep 19;396(10254):839-852 [PMID: 32888407]
  34. Nat Nanotechnol. 2014 May;9(5):353-357 [PMID: 24705510]
  35. Small. 2009 Jul;5(13):1513-6 [PMID: 19296556]
  36. Int J Mol Sci. 2024 Jan 25;25(3): [PMID: 38338741]
  37. Elife. 2023 Nov 09;12: [PMID: 37943025]
  38. Nat Commun. 2020 Jul 31;11(1):3862 [PMID: 32737291]
  39. Nat Commun. 2023 Jun 6;14(1):3168 [PMID: 37280220]
  40. Nano Lett. 2014 Oct 8;14(10):5662-71 [PMID: 25267559]
  41. Interface Focus. 2011 Oct 6;1(5):702-24 [PMID: 23050076]
  42. Nat Methods. 2020 Mar;17(3):279-282 [PMID: 32066961]
  43. Chem Sci. 2015 Feb;6(2):1237-1246 [PMID: 25685315]
  44. Nat Nanotechnol. 2011 Feb;6(2):116-20 [PMID: 21240283]
  45. Science. 2016 Dec 16;354(6318):1441-1444 [PMID: 27980211]
  46. Nat Microbiol. 2024 Aug;9(8):2051-2072 [PMID: 39075233]
  47. Nat Commun. 2018 Jun 6;9(1):2196 [PMID: 29875441]
  48. Nucleic Acids Res. 2019 Feb 20;47(3):1350-1361 [PMID: 30517685]
  49. Nat Protoc. 2019 Jun;14(6):1863-1883 [PMID: 31076662]
  50. Nature. 2008 Mar 13;452(7184):198-201 [PMID: 18337818]
  51. Nucleic Acids Res. 2012 Nov 1;40(20):e154 [PMID: 22810204]
  52. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8852-8858 [PMID: 30979809]
  53. Nat Rev Microbiol. 2018 Aug;16(8):508-518 [PMID: 29777177]
  54. Signal Transduct Target Ther. 2021 Feb 8;6(1):53 [PMID: 33558455]
  55. Nat Biotechnol. 2010 Jul;28(7):743-7 [PMID: 20581846]
  56. Bioinformatics. 2008 Sep 1;24(17):1951-2 [PMID: 18579566]
  57. Nucleic Acids Res. 2020 Nov 18;48(20):11773-11784 [PMID: 33068434]
  58. J Mol Biol. 2009 Feb 6;385(5):1433-44 [PMID: 19109976]
  59. Trends Biochem Sci. 2015 Nov;40(11):648-661 [PMID: 26481500]
  60. Cell. 2024 Feb 15;187(4):846-860.e17 [PMID: 38262409]
  61. Bioinformatics. 2015 Sep 1;31(17):2891-3 [PMID: 25910700]
  62. ACS Synth Biol. 2019 Jul 19;8(7):1583-1589 [PMID: 31290648]
  63. Annu Rev Pharmacol Toxicol. 2025 Jan;65(1):47-69 [PMID: 39227343]
  64. Adv Pharm Bull. 2018 Nov;8(4):551-563 [PMID: 30607328]
  65. Cell. 2002 Nov 27;111(5):747-56 [PMID: 12464185]
  66. Nat Commun. 2017 Sep 14;8(1):540 [PMID: 28912471]
  67. Nucleic Acids Res. 2016 Apr 20;44(7):e63 [PMID: 26687716]
  68. Curr Res Struct Biol. 2020 Sep 12;2:191-203 [PMID: 34235479]
  69. J Am Chem Soc. 2009 Feb 25;131(7):2541-6 [PMID: 19193004]
  70. N Engl J Med. 2021 Feb 25;384(8):705-716 [PMID: 33626253]
  71. Structure. 2006 Jan;14(1):5-14 [PMID: 16407060]
  72. Science. 2011 Sep 2;333(6047):1307-11 [PMID: 21885784]
  73. Nat Nanotechnol. 2021 Jun;16(6):630-643 [PMID: 34059811]
  74. Curr Opin Chem Biol. 2009 Dec;13(5-6):687-96 [PMID: 19879178]
  75. ACS Nano. 2015 May 26;9(5):4950-6 [PMID: 25933202]
  76. Front Immunol. 2023 Jan 31;14:1053550 [PMID: 36798121]
  77. Structure. 2019 Apr 2;27(4):566-578 [PMID: 30744993]
  78. Nucleic Acids Res. 2019 Jun 20;47(11):5563-5572 [PMID: 31106330]
  79. Nat Protoc. 2020 Nov;15(11):3678-3698 [PMID: 33097923]
  80. Nucleic Acids Res. 2022 Nov 28;50(21):12131-12148 [PMID: 36477895]
  81. Nucleic Acids Res. 2017 Feb 28;45(4):2210-2220 [PMID: 28108656]
  82. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7237-42 [PMID: 27298343]
  83. Chem Rev. 2023 Apr 12;123(7):3976-4050 [PMID: 36990451]
  84. ACS Synth Biol. 2015 Feb 20;4(2):162-6 [PMID: 24932527]
  85. Cell. 2022 Jan 20;185(2):250-265.e16 [PMID: 35021064]
  86. ACS Nano. 2014 Aug 26;8(8):8130-40 [PMID: 25058166]
  87. Nature. 2012 May 09;485(7397):185-94 [PMID: 22575958]
  88. Nano Lett. 2018 Jul 11;18(7):4309-4321 [PMID: 29894623]
  89. Science. 2008 Oct 17;322(5900):438-42 [PMID: 18927392]
  90. Methods Mol Biol. 2018;1685:15-23 [PMID: 29086301]
  91. Cancer Cell. 2020 Apr 13;37(4):471-484 [PMID: 32289271]
  92. Cell. 2013 Mar 14;152(6):1237-51 [PMID: 23498934]
  93. Nat Methods. 2020 Sep;17(9):928-936 [PMID: 32747768]
  94. Molecules. 2019 Mar 20;24(6): [PMID: 30897721]
  95. Nat Commun. 2013;4:1779 [PMID: 23653191]
  96. Lab Chip. 2024 Feb 27;24(5):996-1029 [PMID: 38239102]
  97. Nucleic Acids Res. 2015 May 26;43(10):e63 [PMID: 25712091]
  98. Nat Chem Biol. 2014 Apr;10(4):286-90 [PMID: 24609359]
  99. Nature. 2024 Jun;630(8016):493-500 [PMID: 38718835]
  100. Emerg Top Life Sci. 2019 Nov 11;3(5):507-516 [PMID: 33523177]
  101. Nat Biotechnol. 2015 Jan;33(1):73-80 [PMID: 25357182]
  102. Regul Toxicol Pharmacol. 2023 Mar;139:105345 [PMID: 36746323]
  103. Nat Nanotechnol. 2009 May;4(5):325-30 [PMID: 19421220]
  104. Nat Methods. 2013 Oct;10(10):957-63 [PMID: 24076990]
  105. Nano Today. 2012 Aug;7(4):245-257 [PMID: 23024702]
  106. Adv Funct Mater. 2018 Nov 28;28(48): [PMID: 31258458]
  107. N Engl J Med. 2022 Feb 3;386(5):415-427 [PMID: 34891223]
  108. Gastroenterology. 2021 Feb;160(3):831-846.e10 [PMID: 33039464]
  109. Sci Adv. 2019 Feb 22;5(2):eaau2124 [PMID: 30801008]
  110. Nature. 2006 Mar 16;440(7082):297-302 [PMID: 16541064]
  111. Nat Nanotechnol. 2016 Mar;11(3):287-294 [PMID: 26689378]
  112. Nat Commun. 2020 Feb 7;11(1):788 [PMID: 32034150]
  113. Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2219254120 [PMID: 36972433]
  114. Clin Transl Sci. 2023 Dec 7;: [PMID: 38062923]
  115. Mol Ther. 2000 Dec;2(6):535-8 [PMID: 11124053]
  116. Nat Rev Drug Discov. 2018 Feb;17(2):97-113 [PMID: 29242609]
  117. Nat Commun. 2019 Nov 20;10(1):5250 [PMID: 31748511]
  118. Front Immunol. 2018 Sep 19;9:2097 [PMID: 30283444]
  119. Nature. 2020 Jan;577(7792):706-710 [PMID: 31942072]
  120. CRISPR J. 2022 Oct;5(5):642-659 [PMID: 36206027]
  121. Angew Chem Int Ed Engl. 2015 May 26;54(22):6562-6 [PMID: 25864379]
  122. Nat Nanotechnol. 2012 Jun 03;7(6):389-93 [PMID: 22659608]
  123. ACS Appl Bio Mater. 2024 Jun 17;7(6):3587-3604 [PMID: 38833534]
  124. Angew Chem Int Ed Engl. 2010 Mar 15;49(12):2167-70 [PMID: 20175178]
  125. PLoS One. 2015 Jun 17;10(6):e0128443 [PMID: 26083500]
  126. Nature. 2010 May 13;465(7295):206-10 [PMID: 20463735]
  127. ACS Omega. 2020 Feb 03;5(5):2114-2122 [PMID: 32064372]
  128. Nature. 2004 May 27;429(6990):423-9 [PMID: 15116117]
  129. Nat Nanotechnol. 2013 Jun;8(6):459-67 [PMID: 23708428]
  130. Semin Cancer Biol. 2005 Oct;15(5):405-12 [PMID: 16055341]
  131. Phys Biol. 2024 Jul 10;21(4): [PMID: 38949434]
  132. Science. 2006 Dec 8;314(5805):1585-8 [PMID: 17158324]
  133. Nat Rev Genet. 2022 Aug;23(8):467-491 [PMID: 35338360]
  134. PLoS One. 2015 Aug 28;10(8):e0135965 [PMID: 26317656]
  135. Adv Drug Deliv Rev. 2021 Jun;173:427-438 [PMID: 33857556]
  136. Nature. 1999 Jan 14;397(6715):144-6 [PMID: 9923675]
  137. Science. 2012 Feb 17;335(6070):831-4 [PMID: 22344439]
  138. Small. 2019 Jun;15(26):e1804044 [PMID: 30645016]
  139. Nat Commun. 2013;4:2718 [PMID: 24177351]
  140. Sci Adv. 2023 May 26;9(21):eadg1062 [PMID: 37235645]
  141. Sci Rep. 2023 Jul 19;13(1):11623 [PMID: 37468746]
  142. Elife. 2020 Sep 23;9: [PMID: 32965214]
  143. NPJ Syst Biol Appl. 2021 Mar 11;7(1):15 [PMID: 33707429]
  144. Sheng Li Xue Bao. 2017 Jun 25;69(3):241-251 [PMID: 28638915]
  145. Nat Rev Genet. 2022 May;23(5):265-280 [PMID: 34983972]
  146. Nucleic Acids Res. 2014 Feb;42(3):2085-97 [PMID: 24194608]
  147. FEBS J. 2017 Sep;284(18):2955-2980 [PMID: 28715126]
  148. Nat Commun. 2023 Mar 20;14(1):1532 [PMID: 36941256]
  149. Nature. 2000 Aug 10;406(6796):605-8 [PMID: 10949296]
  150. PLoS One. 2014 Sep 12;9(9):e107504 [PMID: 25215508]
  151. Mol Cell. 1998 Jul;2(1):149-55 [PMID: 9702202]
  152. ACS Synth Biol. 2017 Jul 21;6(7):1257-1262 [PMID: 28365983]
  153. Nat Rev Mol Cell Biol. 2019 Aug;20(8):474-489 [PMID: 31182864]
  154. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 [PMID: 12456892]
  155. Cell. 2022 Jul 21;185(15):2806-2827 [PMID: 35798006]
  156. ACS Nano. 2014 May 27;8(5):4771-81 [PMID: 24694194]
  157. Science. 2014 Aug 15;345(6198):799-804 [PMID: 25124436]
  158. Angew Chem Int Ed Engl. 2004 Jul 5;43(27):3554-7 [PMID: 15293243]
  159. Int J Mol Sci. 2022 Apr 12;23(8): [PMID: 35457085]
  160. Nat Methods. 2010 Dec;7(12):973-5 [PMID: 21037589]
  161. Nature. 2003 Jan 23;421(6921):444-8 [PMID: 12540920]
  162. Structure. 2005 Jul;13(7):1047-54 [PMID: 16004876]
  163. Acta Biochim Pol. 2016;63(4):737-744 [PMID: 27741327]
  164. Science. 2012 Nov 9;338(6108):810-4 [PMID: 23139335]
  165. Nano Lett. 2022 Jul 27;22(14):5961-5972 [PMID: 35786891]
  166. Interface Focus. 2023 Aug 11;13(5):20230017 [PMID: 37577006]
  167. Nature. 2009 May 7;459(7243):73-6 [PMID: 19424153]
  168. Nanomedicine. 2020 Jan;23:102094 [PMID: 31669854]
  169. PLoS Biol. 2018 Aug 13;16(8):e3000003 [PMID: 30102691]
  170. Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4): [PMID: 28348035]
  171. Molecules. 2018 Oct 02;23(10): [PMID: 30279331]
  172. Int J Mol Sci. 2019 Aug 23;20(17): [PMID: 31450739]
  173. ACS Synth Biol. 2013 Feb 15;2(2):72-82 [PMID: 23526588]
  174. Nature. 2024 Jun;630(8018):984-993 [PMID: 38926615]
  175. Mol Ther Nucleic Acids. 2023 Dec 05;35(1):102086 [PMID: 38204913]
  176. Protein Eng Des Sel. 2023 Jan 21;36: [PMID: 36370045]
  177. Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1059-1063 [PMID: 27981708]
  178. Nat Nanotechnol. 2010 Sep;5(9):676-82 [PMID: 20802494]
  179. J Proteomics. 2020 May 30;220:103777 [PMID: 32268219]
  180. Biofabrication. 2024 Aug 27;16(4): [PMID: 39189069]
  181. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10709-14 [PMID: 18667691]
  182. Acc Chem Res. 2014 Jun 17;47(6):1871-80 [PMID: 24856178]
  183. Comput Struct Biotechnol J. 2022 Nov 11;20:6120-6137 [PMID: 36420155]
  184. Anal Bioanal Chem. 2024 Nov;416(27):5893-5914 [PMID: 38488951]
  185. Nature. 2012 Feb 15;482(7385):322-30 [PMID: 22337051]
  186. Int J Mol Sci. 2021 Jul 30;22(15): [PMID: 34361000]
  187. J R Soc Interface. 2017 Mar;14(128): [PMID: 28250099]
  188. Chem Rev. 2024 Aug 14;124(15):9113-9135 [PMID: 39008623]
  189. Nat Nanotechnol. 2013 Apr;8(4):296-304 [PMID: 23542902]
  190. Nat Commun. 2021 Nov 16;12(1):6615 [PMID: 34785644]
  191. Vaccines (Basel). 2021 Apr 08;9(4): [PMID: 33918072]
  192. Chem Rev. 2016 Jun 8;116(11):6463-87 [PMID: 26894745]
  193. J Phys Chem B. 2021 Feb 25;125(7):1806-1814 [PMID: 33566608]
  194. Nucleic Acids Res. 2017 Jun 20;45(11):6299-6309 [PMID: 28482022]
  195. Nat Commun. 2023 Sep 16;14(1):5745 [PMID: 37717036]
  196. Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2405717121 [PMID: 39441641]
  197. ACS Infect Dis. 2020 May 8;6(5):1044-1057 [PMID: 32275825]
  198. Small. 2022 Nov;18(46):e2204941 [PMID: 36216772]
  199. J Am Chem Soc. 2004 Sep 8;126(35):10834-5 [PMID: 15339155]
  200. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  201. Nat Rev Mol Cell Biol. 2021 Feb;22(2):96-118 [PMID: 33353982]
  202. Nat Biotechnol. 2018 Mar;36(3):258-264 [PMID: 29431737]
  203. Chem Soc Rev. 2010 Mar;39(3):1036-48 [PMID: 20179823]
  204. Methods. 2019 May 15;161:54-63 [PMID: 31059832]
  205. Front Microbiol. 2018 Jan 09;8:2634 [PMID: 29375504]
  206. Open Biol. 2022 Mar;12(3):210333 [PMID: 35232251]
  207. Nat Commun. 2020 Aug 13;11(1):4044 [PMID: 32792536]
  208. Front Mol Biosci. 2022 Feb 22;9:834841 [PMID: 35274007]
  209. Biophys J. 2024 Sep 3;123(17):2671-2681 [PMID: 37838833]
  210. Am J Pathol. 2016 Jul;186(7):1724-35 [PMID: 27338107]
  211. Plant Cell. 2023 May 29;35(6):1671-1707 [PMID: 36747354]
  212. Nat Commun. 2011 Jun 07;2:340 [PMID: 21654640]
  213. Adv Funct Mater. 2022 Oct 21;32(43): [PMID: 37008199]
  214. Cell. 2021 Jun 10;184(12):3109-3124.e22 [PMID: 34004145]
  215. Nat Commun. 2015 Feb 24;6:6256 [PMID: 25708714]
  216. Chem Rev. 2021 Oct 27;121(20):12384-12444 [PMID: 34297541]
  217. Bioconjug Chem. 2023 Jun 21;34(6):1139-1146 [PMID: 37293781]

Grants

  1. R35 GM134864/NIGMS NIH HHS
  2. R35 GM139587/NIGMS NIH HHS

MeSH Term

Nucleic Acids
Humans
Proteins
Protein Engineering
Nanotechnology

Chemicals

Nucleic Acids
Proteins

Word Cloud

Created with Highcharts 10.0.0agentsnanocomputingnucleicAutonomousdesignacidsproteinstechnologyhumanfunctionresearchfunctionsrecentyearsrapiddevelopmentemploymentautonomousobservedmanyareasactivitycanreadilyadjustenvironmentalconditionsenableefficientoperationwithoutcontrolapplyingconceptdesigningadvancedbiomoleculartherapiesrevolutionizenanomedicineapproachesengineeringbiologicalpredefinedoperationswithinlivingcellsremainchallengemadeappealingideatwodecadesshownengineeredactrealphysicalbiochemicalconstraintslogicalmannerThroughoutdomainslifeperformvarietyvitalsequence-definedstructuresbiopolymerseitheroperateefficientlytogetherprogrammabilitysynergyinspiremassiveeffortsutilizeversatilityaminoencodepropertiesotherwiseexistnaturePerspectivecoverskeyconceptsusedapplicationdiscussespotentiallimitationspathsforwardNucleicAcidProteinNanocomputingAgentsEngineeredOperateLivingCellsdirectedevolutionacidnanoparticlesrational

Similar Articles

Cited By