Shengyi Fei, Blake D Rule, Joshua S Godwin, C Brooks Mobley, Michael D Roberts, Ferdinand von Walden, Ivan J Vechetti
MicroRNAs (miRNAs) are small, noncoding RNAs that play a critical role in regulating gene expression post-transcriptionally. They are involved in various developmental and physiological processes, and their dysregulation is linked to various diseases. Skeletal muscle-specific miRNAs, including miR-1, play a crucial role in the development and maintenance of skeletal muscle. It has been demonstrated that the expression of miR-1 decreases by approximately 50% in response to hypertrophic stimuli, suggesting its potential involvement in muscle hypertrophy. In our study, we hypothesize that reduction of miR-1 levels is necessary for skeletal muscle growth due to its interaction to essential pro-growth genes. Promoting a smaller reduction of miR-1 levels, we observed a blunted hypertrophic response in mice undergoing a murine model of muscle hypertrophy. In addition, our results suggest that miR-1 inhibits the expression of Itm2a, a membrane-related protein, as potential miR-1-related candidate for skeletal muscle hypertrophy. While the exact mechanism in muscle hypertrophy has not been identified, our results suggest that miR-1-regulated membrane proteins are important for skeletal muscle hypertrophy.