miRNA-1 regulation is necessary for mechanical overload-induced muscle hypertrophy in male mice.

Shengyi Fei, Blake D Rule, Joshua S Godwin, C Brooks Mobley, Michael D Roberts, Ferdinand von Walden, Ivan J Vechetti
Author Information
  1. Shengyi Fei: Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
  2. Blake D Rule: Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
  3. Joshua S Godwin: School of Kinesiology, Auburn University, Auburn, Alabama, USA.
  4. C Brooks Mobley: School of Kinesiology, Auburn University, Auburn, Alabama, USA.
  5. Michael D Roberts: School of Kinesiology, Auburn University, Auburn, Alabama, USA. ORCID
  6. Ferdinand von Walden: Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden. ORCID
  7. Ivan J Vechetti: Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA. ORCID

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that play a critical role in regulating gene expression post-transcriptionally. They are involved in various developmental and physiological processes, and their dysregulation is linked to various diseases. Skeletal muscle-specific miRNAs, including miR-1, play a crucial role in the development and maintenance of skeletal muscle. It has been demonstrated that the expression of miR-1 decreases by approximately 50% in response to hypertrophic stimuli, suggesting its potential involvement in muscle hypertrophy. In our study, we hypothesize that reduction of miR-1 levels is necessary for skeletal muscle growth due to its interaction to essential pro-growth genes. Promoting a smaller reduction of miR-1 levels, we observed a blunted hypertrophic response in mice undergoing a murine model of muscle hypertrophy. In addition, our results suggest that miR-1 inhibits the expression of Itm2a, a membrane-related protein, as potential miR-1-related candidate for skeletal muscle hypertrophy. While the exact mechanism in muscle hypertrophy has not been identified, our results suggest that miR-1-regulated membrane proteins are important for skeletal muscle hypertrophy.

Keywords

References

  1. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jul;1865(7):158678 [PMID: 32126286]
  2. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4741-6 [PMID: 16537399]
  3. J Cachexia Sarcopenia Muscle. 2020 Dec;11(6):1705-1722 [PMID: 32881361]
  4. Int J Biochem Cell Biol. 2014 Feb;47:93-103 [PMID: 24342526]
  5. Am J Physiol Cell Physiol. 2005 Oct;289(4):C853-9 [PMID: 15888552]
  6. Am J Physiol Cell Physiol. 2006 Jun;290(6):C1660-5 [PMID: 16421207]
  7. FASEB J. 2021 Jun;35(6):e21644 [PMID: 34033143]
  8. Physiol Rep. 2025 Jan;13(1):e70166 [PMID: 39761956]
  9. Lab Invest. 2012 Apr;92(4):571-83 [PMID: 22330340]
  10. J Appl Physiol (1985). 2011 Feb;110(2):309-17 [PMID: 21030674]
  11. PLoS One. 2012;7(10):e47258 [PMID: 23077579]
  12. Genome Biol. 2004;5(3):R13 [PMID: 15003116]
  13. Front Oncol. 2020 Nov 24;10:607196 [PMID: 33330108]
  14. Front Nutr. 2019 Jun 12;6:91 [PMID: 31249834]
  15. Function (Oxf). 2023 Nov 06;5(1):zqad062 [PMID: 38020067]
  16. J Biol Chem. 1999 Oct 8;274(41):29282-8 [PMID: 10506186]
  17. Nat Methods. 2016 Jun;13(6):508-14 [PMID: 27018577]
  18. Function (Oxf). 2020;1(1):zqaa009 [PMID: 32864621]
  19. Am J Physiol Cell Physiol. 2023 May 1;324(5):C1101-C1109 [PMID: 36971422]
  20. Cell Commun Signal. 2019 Aug 22;17(1):105 [PMID: 31438969]
  21. Mol Biol Cell. 2016 Mar 1;27(5):788-98 [PMID: 26764089]
  22. Sci Rep. 2019 Apr 2;9(1):5483 [PMID: 30940834]
  23. Sci Rep. 2021 Aug 5;11(1):15898 [PMID: 34354145]
  24. Cell Stem Cell. 2017 Jan 5;20(1):56-69 [PMID: 27840022]
  25. J Cell Sci. 2013 Jun 15;126(Pt 12):2678-91 [PMID: 23606743]
  26. J Biol Chem. 2004 Oct 1;279(40):41950-9 [PMID: 15280379]
  27. Biochem Soc Trans. 2020 Apr 29;48(2):595-612 [PMID: 32267487]
  28. Antioxid Redox Signal. 2007 Aug;9(8):1035-57 [PMID: 17567240]
  29. PLoS One. 2013 May 01;8(5):e63143 [PMID: 23650549]
  30. Front Endocrinol (Lausanne). 2018 Aug 03;9:402 [PMID: 30123182]
  31. Physiology (Bethesda). 2019 Jan 1;34(1):30-42 [PMID: 30540235]
  32. Int J Parasitol. 2023 Oct;53(11-12):637-649 [PMID: 37355197]
  33. Am J Physiol Cell Physiol. 2012 May 15;302(10):C1523-30 [PMID: 22403788]
  34. J Physiol. 2009 Jul 15;587(Pt 14):3691-701 [PMID: 19470781]
  35. Cell Biol Int. 2004;28(3):199-207 [PMID: 14984746]
  36. J Clin Endocrinol Metab. 2011 Sep;96(9):E1388-98 [PMID: 21752897]
  37. Am J Physiol. 1999 Jul;277(1):C152-62 [PMID: 10409118]
  38. Nucleic Acids Res. 2024 Feb 28;52(4):1988-2011 [PMID: 38197221]
  39. Circulation. 2009 Dec 8;120(23):2377-85 [PMID: 19933931]
  40. Physiol Rev. 2011 Jul;91(3):827-87 [PMID: 21742789]
  41. Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1333-40 [PMID: 18827171]
  42. Exerc Sport Sci Rev. 2016 Jul;44(3):110-5 [PMID: 27135313]
  43. Am J Physiol Cell Physiol. 2019 Oct 1;317(4):C629-C641 [PMID: 31314586]
  44. Cell. 2009 Jan 23;136(2):215-33 [PMID: 19167326]
  45. Biochim Biophys Acta. 2008 Nov;1779(11):682-91 [PMID: 18381085]
  46. Curr Biol. 2010 Nov 9;20(21):1945-52 [PMID: 20970343]
  47. J Appl Physiol (1985). 2011 Oct;111(4):1134-41 [PMID: 21817112]
  48. J Appl Physiol (1985). 2013 Oct 1;115(7):1065-74 [PMID: 23869057]
  49. Exerc Sport Sci Rev. 2019 Apr;47(2):91-97 [PMID: 30632998]
  50. J Biol Chem. 2014 Jan 17;289(3):1551-63 [PMID: 24302719]
  51. J Appl Physiol (1985). 2018 Jan 01;124(1):40-51 [PMID: 28982947]
  52. J Physiol. 2021 Feb;599(3):845-861 [PMID: 31944292]
  53. Nature. 2018 Nov;563(7732):508-513 [PMID: 30464263]
  54. Nat Genet. 2006 Jul;38(7):813-8 [PMID: 16751773]
  55. Physiol Rev. 2023 Oct 1;103(4):2679-2757 [PMID: 37382939]
  56. J Appl Physiol (1985). 2007 Jan;102(1):306-13 [PMID: 17008435]

Grants

  1. P20GM104320-07/HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  2. 2022-01392/Swedish research council
  3. 2022/10'/Swedish Research Council for Sport Science
  4. '2023/09/Swedish Research Council for Sport Science
  5. SLS-986170/Swedish Medical Association
  6. /Åke Wiberg Foundation

MeSH Term

Animals
MicroRNAs
Male
Mice
Muscle, Skeletal
Hypertrophy
Mice, Inbred C57BL

Chemicals

MicroRNAs
Mirn1 microRNA, mouse

Word Cloud

Created with Highcharts 10.0.0musclehypertrophymiR-1skeletalexpressionmiRNAsplayrolevariousresponsehypertrophicpotentialreductionlevelsnecessarymiceresultssuggestMicroRNAssmallnoncodingRNAscriticalregulatinggenepost-transcriptionallyinvolveddevelopmentalphysiologicalprocessesdysregulationlinkeddiseasesSkeletalmuscle-specificincludingcrucialdevelopmentmaintenancedemonstrateddecreasesapproximately50%stimulisuggestinginvolvementstudyhypothesizegrowthdueinteractionessentialpro-growthgenesPromotingsmallerobservedbluntedundergoingmurinemodeladditioninhibitsItm2amembrane-relatedproteinmiR-1-relatedcandidateexactmechanismidentifiedmiR-1-regulatedmembraneproteinsimportantmiRNA-1regulationmechanicaloverload-inducedmalemiR‐1

Similar Articles

Cited By