De novo assembly of the mitochondrial genome of Glycyrrhiza glabra and identification of two types of homologous recombination configurations caused by repeat sequences.

Guowang Zhou, Meiling Qin, Xiuli Liu, Yonghui Qi, Xiaobin Ou, Min Tang
Author Information
  1. Guowang Zhou: College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
  2. Meiling Qin: School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
  3. Xiuli Liu: Gansu Key Laboratory of Protection and Utlization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu, 745000, China.
  4. Yonghui Qi: Gansu Key Laboratory of Protection and Utlization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu, 745000, China.
  5. Xiaobin Ou: Gansu Key Laboratory of Protection and Utlization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu, 745000, China. xbou@zju.edu.cn.
  6. Min Tang: School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China. mt3138@ujs.edu.cn.

Abstract

BACKGROUND: Glycyrrhiza glabra, which is widely used in medicine and therapy, is known as the 'king of traditional Chinese medicine'. In this study, we successfully assembled and annotated the mitochondrial and chloroplast genomes of G. glabra via high-throughput sequencing technology, combining the advantages of short-read (Illumina) and long-read (Oxford Nanopore) sequencing.
RESULTS: We revealed the ring structure of the mitochondrial genome, which spans 421,293 bp with 45.1% GC content and 56 annotated genes. Notably, we identified 514 repetitive sequences, including 123 Simple sequence repeats (SRs), 3 Tndem sequence repeats (TSRs), and 388 Dispersed sequence repeats (DSRs). We identified 79 out of the 388 DSRs as potentially involved in homologous recombination. We identified five forward repeats and four palindromic repeats that facilitate homologous recombination and induce alterations in the mitochondrial genome structure. We corroborated this finding via polymerase chain reaction (PCR). Furthermore, we identified chloroplast-derived sequence fragments within the mitochondrial genome, offering novel insights into the evolutionary history of plant mitochondrial genomes. We predicted 460 potential RNA editing sites, primarily involving cytosine-to-uracil transitions. This study reveals the complexity of repetitive sequence-mediated homologous recombination in the mitochondrial genome of G. glabra and provides new insights into its structure, function, and evolution.
CONCLUSIONS: These findings have important implications for conservation biology, population genetics, and evolutionary studies, underscoring the role of repetitive sequences in genome dynamics and highlighting the need for further research on mitochondrial genome evolution and function in plants.

Keywords

References

  1. Plants (Basel). 2021 Sep 28;10(10): [PMID: 34685843]
  2. Bioinformatics. 2018 Apr 1;34(7):1081-1085 [PMID: 29126205]
  3. Biology (Basel). 2022 Nov 13;11(11): [PMID: 36421375]
  4. BMC Bioinformatics. 2018 Jul 3;19(1):255 [PMID: 29970001]
  5. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  6. Nucleic Acids Res. 2024 Jul 5;52(W1):W78-W82 [PMID: 38613393]
  7. Bioinformatics. 2018 Aug 1;34(15):2666-2669 [PMID: 29547981]
  8. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  9. Int J Mol Sci. 2023 Mar 11;24(6): [PMID: 36982448]
  10. BMC Biol. 2011 Sep 27;9:61 [PMID: 21951676]
  11. Int J Mol Sci. 2021 Oct 11;22(20): [PMID: 34681623]
  12. J Exp Bot. 2024 Sep 11;75(17):5175-5187 [PMID: 38592734]
  13. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  14. BMC Genomics. 2024 Apr 1;25(1):322 [PMID: 38561677]
  15. Environ Sci Pollut Res Int. 2023 Apr;30(19):55625-55634 [PMID: 36897456]
  16. Bioinformatics. 2019 Feb 1;35(3):421-432 [PMID: 30020410]
  17. G3 (Bethesda). 2020 Mar 5;10(3):1077-1086 [PMID: 31964685]
  18. BMC Plant Biol. 2024 Jul 8;24(1):645 [PMID: 38972991]
  19. Imeta. 2023 Feb 16;2(1):e87 [PMID: 38868339]
  20. Ann N Y Acad Sci. 1981;361:166-92 [PMID: 6941718]
  21. Bioinformatics. 2017 Aug 15;33(16):2583-2585 [PMID: 28398459]
  22. Bioinformatics. 2018 Jul 15;34(14):2490-2492 [PMID: 29506019]
  23. G3 (Bethesda). 2019 Feb 7;9(2):549-559 [PMID: 30563833]
  24. Bioinformatics. 2021 Dec 7;37(23):4572-4574 [PMID: 34623391]
  25. BMC Genomics. 2022 Dec 2;23(1):794 [PMID: 36460956]
  26. Phytother Res. 2018 Dec;32(12):2323-2339 [PMID: 30117204]
  27. Mol Biol Evol. 2007 Mar;24(3):699-709 [PMID: 17175527]
  28. Front Genet. 2021 Sep 29;12:757109 [PMID: 34659369]
  29. PLoS Comput Biol. 2017 Jun 8;13(6):e1005595 [PMID: 28594827]
  30. Genome Biol Evol. 2020 Jul 1;12(7):1174-1179 [PMID: 32449750]
  31. BMC Genomics. 2023 Feb 28;24(1):90 [PMID: 36855055]
  32. Plant Physiol. 2023 Apr 3;191(4):2104-2119 [PMID: 36440979]
  33. BMC Genomics. 2015 Aug 05;16:580 [PMID: 26238519]
  34. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  35. Gene. 2025 Jan 30;935:149031 [PMID: 39461576]
  36. Genes (Basel). 2022 May 08;13(5): [PMID: 35627224]
  37. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  38. Mitochondrion. 2008 Jan;8(1):15-25 [PMID: 18326073]
  39. Front Pharmacol. 2024 Aug 12;15:1453426 [PMID: 39188947]
  40. Int J Mol Sci. 2020 Jan 03;21(1): [PMID: 31947741]
  41. Plant J. 2020 Mar;101(5):1040-1056 [PMID: 31630458]
  42. Mol Biol Evol. 2018 Nov 1;35(11):2773-2785 [PMID: 30202905]
  43. Front Plant Sci. 2024 Aug 07;15:1449606 [PMID: 39170791]
  44. Mol Biol Evol. 2007 Sep;24(9):2040-8 [PMID: 17609537]
  45. PLoS Biol. 2012 Jan;10(1):e1001241 [PMID: 22272183]
  46. BMC Plant Biol. 2019 Nov 12;19(1):492 [PMID: 31718541]
  47. New Phytol. 2013 Dec;200(4):978-85 [PMID: 24712049]
  48. BMC Genomics. 2021 Mar 18;22(1):194 [PMID: 33736599]
  49. Imeta. 2023 May 08;2(2):e107 [PMID: 38868435]
  50. PLoS One. 2023 Jan 26;18(1):e0281134 [PMID: 36701356]
  51. Planta. 2021 Jul 24;254(2):36 [PMID: 34302538]
  52. BMC Genomics. 2024 Aug 8;25(1):773 [PMID: 39118028]
  53. BMC Genomics. 2018 Dec 4;19(1):874 [PMID: 30514207]
  54. Molecules. 2023 Nov 22;28(23): [PMID: 38067451]
  55. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  56. Nucleic Acids Res. 2001 Nov 15;29(22):4633-42 [PMID: 11713313]
  57. Int J Biol Macromol. 2023 Nov 1;251:126257 [PMID: 37573900]
  58. Front Pharmacol. 2023 Aug 15;14:1265172 [PMID: 37649893]

Grants

  1. QY-STK-2023A-030/Science and Technology Program of Qingyang City
  2. 2020C-24/Industrial Support Project of Colleges and Universities in Gansu Province

MeSH Term

Genome, Mitochondrial
Glycyrrhiza
Homologous Recombination
Repetitive Sequences, Nucleic Acid
RNA Editing
High-Throughput Nucleotide Sequencing
Genome, Chloroplast

Word Cloud

Created with Highcharts 10.0.0mitochondrialgenomeglabrarepeatsrecombinationidentifiedsequencessequencehomologousGlycyrrhizastructurerepetitiveevolutionstudyannotatedgenomesGviasequencing388DSRsinsightsevolutionaryfunctionBACKGROUND:widelyusedmedicinetherapyknown'kingtraditionalChinesemedicine'successfullyassembledchloroplasthigh-throughputtechnologycombiningadvantagesshort-readIlluminalong-readOxfordNanoporeRESULTS:revealedringspans421293 bp451%GCcontent56genesNotably514including123SimpleSRs3TndemTSRsDispersed79potentiallyinvolvedfiveforwardfourpalindromicfacilitateinducealterationscorroboratedfindingpolymerasechainreactionPCRFurthermorechloroplast-derivedfragmentswithinofferingnovelhistoryplantpredicted460potentialRNAeditingsitesprimarilyinvolvingcytosine-to-uraciltransitionsrevealscomplexitysequence-mediatedprovidesnewCONCLUSIONS:findingsimportantimplicationsconservationbiologypopulationgeneticsstudiesunderscoringroledynamicshighlightingneedresearchplantsDenovoassemblyidentificationtwotypesconfigurationscausedrepeatHomologousMitochondrialPlantRepeat

Similar Articles

Cited By

No available data.