Single-cell RNA sequencing highlights the unique tumor microenvironment of small cell neuroendocrine cervical carcinoma.

Tianyou Wang, Li Zhang, Song Mei, Bo Wang, Jiaqi Liu, Weiping Yang, Jiongbo Liao, Chao Wang
Author Information
  1. Tianyou Wang: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
  2. Li Zhang: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
  3. Song Mei: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  4. Bo Wang: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
  5. Jiaqi Liu: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
  6. Weiping Yang: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
  7. Jiongbo Liao: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. liaojiongbo@163.com.
  8. Chao Wang: Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. wang1980-55@163.com.

Abstract

Small cell neuroendocrine cervical carcinoma is a highly aggressive tumor characterized by early metastasis, a high recurrence rate, and poor prognosis. This study represents the first instance of single-cell sequencing conducted on small cell neuroendocrine carcinoma of the cervix worldwide. Analysis of gene expression regulatory networks revealed that the transcription factor TFF3 drived up-regulation of ELF3. Furthermore, our findings indicated that the neuroendocrine marker genes and gene regulatory networks associated with Small cell neuroendocrine cervical carcinoma differed from those observed in lung, small intestine, and liver neuroendocrine carcinoma within the GEO database, suggesting tissue-specific origins for these malignancies. Overall, this study addresses a significant research in understanding Small cell neuroendocrine cervical carcinoma in vivo and provides valuable insights for guiding radiotherapy, chemotherapy, and targeted therapy.

Keywords

References

  1. Chao A, Wu RC, Lin CY, et al. Small cell neuroendocrine carcinoma of the cervix: from molecular basis to therapeutic advances. Biomed J. 2023;46(5): 100633. [PMID: 37467967]
  2. Society of Neuroendocrine Neoplasm of China Anti-Cancer Association. China Anti-Cancer Association guideline for diagnosis and treatment of neuroendocrine neoplasm (2022 edition). China Oncol. 2022;32(6):545–79.
  3. Mahdi H, Joehlin-Price A, Elishaev E, et al. Genomic analyses of high-grade neuroendocrine gynecological malignancies reveal a unique mutational landscape and therapeutic vulnerabilities. Mol Oncol. 2021;15(12):3545–58. [PMID: 34245124]
  4. Saraei P, Heshmati A, Hosseini S. Small-cell neuroendocrine carcinoma of the female genital tract: a comprehensive overview. J Neuroendocrinol. 2024;36(6): e13394. [PMID: 38626758]
  5. Lyu YH, Liu HX, Han X, et al. Clinicopathologic characteristics and prognostic factors of patients with surgically treated high-grade neuroendocrine carcinoma of the cervix: a multicenter retrospective study. Int J Gynaecol Obstet. 2024.
  6. Pan B, Yan S, Yuan L, et al. Multiomics sequencing and immune microenvironment characteristics define three subtypes of small cell neuroendocrine carcinoma of the cervix. J Pathol. 2024;263(3):372–85. [PMID: 38721894]
  7. Bellone S, Jeong K, Halle MK, et al. Integrated mutational landscape analysis of poorly differentiated high-grade neuroendocrine carcinoma of the uterine cervix. Proc Natl Acad Sci U S A. 2024;121(17): e2321898121. [PMID: 38625939]
  8. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/ .
  9. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. [PMID: 14597658]
  10. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281-291.e289. [PMID: 30954476]
  11. Bunis DG, Andrews J, Fragiadakis GK, Burt TD, Sirota M. dittoSeq: universal user-friendly single-cell and bulk RNA sequencing visualization toolkit. Bioinformatics. 2020;36:5535–6. https://doi.org/10.1093/bioinformatics/btaa1011 . [DOI: 10.1093/bioinformatics/btaa1011]
  12. Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–72. [PMID: 30643263]
  13. Li R, Zhang J, Li Z. EasyCellType: marker-based cell-type annotation by automatically querying multiple databases. Bioinform Adv. 2023;3(1):vbad029. [PMID: 36998720]
  14. Chen CC, Tran W, Song K, et al. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell. 2023;41(12):2066-2082 e2069. [PMID: 37995683]
  15. Ou Z, Lin S, Qiu J, et al. Single-nucleus RNA sequencing and spatial transcriptomics reveal the immunological microenvironment of cervical squamous cell carcinoma. Adv Sci (Weinh). 2022;9(29): e2203040. [PMID: 35986392]
  16. Liu C, Zhang M, Yan X, et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. Sci Adv. 2023;9(4):eadd8977. [PMID: 36706185]
  17. Baine MK, Hsieh MS, Lai WV, et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: a comprehensive immunohistochemical and histopathologic characterization. J Thorac Oncol. 2020;15(12):1823–35. [PMID: 33011388]
  18. Clarke ZA, Andrews TS, Atif J, et al. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat Protoc. 2021;16(6):2749–64. [PMID: 34031612]
  19. Hu C, Li T, Xu Y, et al. Cell Marker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51(D1):D870-d876. [PMID: 36300619]
  20. inferCNV of the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV .
  21. Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29(9):725–38. [PMID: 31273297]
  22. Gu, Z. Complex Heatmap Visualization. iMeta 2022.
  23. Qiu X, Hill A, Packer J, et al. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017;14(3):309–15. [PMID: 28114287]
  24. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9. [PMID: 10802651]
  25. Wang S, Zhong Y, Cheng J, et al. EnrichVisBox: a versatile and powerful web toolbox for visualizing complex functional enrichment results of omics data. J Comput Biol. 2021;28(9):922–30. [PMID: 34271847]
  26. Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience. 2018. https://doi.org/10.1093/gigascience/giy083 . [DOI: 10.1093/gigascience/giy083]
  27. Chu Y, Dai E, Li Y, et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat Med. 2023;29(6):1550–62. [PMID: 37248301]
  28. Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564(7735):268–72. [PMID: 30479382]
  29. Han C, Liu T, Yin R. Biomarkers for cancer-associated fibroblasts. Biomark Res. 2020;8(1):64. [PMID: 33292666]
  30. Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25. [PMID: 26771021]
  31. Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40. [PMID: 21546393]
  32. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. [PMID: 16199517]
  33. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6. [PMID: 28991892]
  34. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using Cell Chat. Nat Commun. 2021;12(1):1088. [PMID: 33597522]
  35. George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. [PMID: 26168399]
  36. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. [PMID: 22588877]
  37. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. [PMID: 23550210]
  38. de Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR Project GENIE biopharma collaborative in cBioPortal. Cancer Res. 2023;83(23):3861–7. [PMID: 37668528]
  39. Kassambara A, Kosinski M, Biecek P. survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. 2021. https://CRAN.R-project.org/package=survminer .
  40. Therneau T. A Package for Survival Analysis in R. R package version 3.5–7, 2023. https://CRAN.R-project.org/package=survival .
  41. Rao M, Oh K, Moffitt R, et al. Comparative single-cell RNA sequencing (scRNA-seq) reveals liver metastasis-specific targets in a patient with small intestinal neuroendocrine cancer. Cold Spring Harb Mol Case Stud. 2020. https://doi.org/10.1101/mcs.a004978 . [DOI: 10.1101/mcs.a004978]
  42. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e3529. [PMID: 34062119]
  43. Zhang L, Li Z, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020;181(2):442–459429. [PMID: 32302573]
  44. Ju Y, Fang S, Liu L, et al. The function of the ELF3 gene and its mechanism in cancers. Life Sci. 2024;346: 122637. [PMID: 38614305]
  45. Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF transcription factors in tissue homeostasis and cancer. Molecules. 2018. https://doi.org/10.3390/molecules23092191 . [DOI: 10.3390/molecules23092191]
  46. Horie M, Tanaka H, Suzuki M, et al. An integrative epigenomic approach identifies ELF3 as an oncogenic regulator in ASCL1-positive neuroendocrine carcinoma. Cancer Sci. 2023;114(6):2596–608. [PMID: 36840413]
  47. Lu TONG, Shan LI, Zheng P. Expression of ELF3 in cervical cancer and its effect on the proliferation of HeLa cells. J Shanxi Med Univ. 2022;53(8):941–9.
  48. Ojesina AI, Lichtenstein L, Freeman SS, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506(7488):371–5. [PMID: 24390348]
  49. Bedard MC, Chihanga T, Carlile A, et al. Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer. Nat Commun. 2023;14(1):1975. [PMID: 37031202]
  50. Wang Y, Qiu H, Lin R, et al. Advancements in the understanding of small-cell neuroendocrine cervical cancer: where we stand and what lies ahead. J Pers Med. 2024. https://doi.org/10.3390/jpm14050462 . [DOI: 10.3390/jpm14050462]
  51. Liu Y, Li M, Liu Y, et al. Liquid-based cytology of small cell carcinoma of the cervix: a multicenter retrospective study. Onco Targets Ther. 2024;17:557–65. [PMID: 39006884]
  52. Laskou A, Znalesniak EB, Harder S, et al. Different forms of TFF3 in the human endocervix, including a complex with IgG Fc binding protein (FCGBP), and further aspects of the cervico-vaginal innate immune barrier. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25042287 . [DOI: 10.3390/ijms25042287]
  53. Fina E, Cleris L, Dugo M, et al. Gene signatures of circulating breast cancer cell models are a source of novel molecular determinants of metastasis and improve circulating tumor cell detection in patients. J Exp Clin Cancer Res. 2022;41(1):78. [PMID: 35216615]
  54. Lorenz A, Lenkiewicz S, Kozlowski M, et al. Neuroendocrine neoplasms of the gastrointestinal tract versus neuroendocrine neoplasms of the gynaecological tract-comparison of the risk factors and non-surgical treatment efficacy. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24076853 . [DOI: 10.3390/ijms24076853]
  55. Oberg K, Califano A, Strosberg JR, et al. A meta-analysis of the accuracy of a neuroendocrine tumor mRNA genomic biomarker (NETest) in blood. Ann Oncol. 2020;31(2):202–12. [PMID: 31959337]
  56. Ichikawa Y, Kobayashi N, Takano S, et al. Neuroendocrine tumor theranostics. Cancer Sci. 2022;113(6):1930–8. [PMID: 35271754]
  57. Kim G, Kim M, Nam EJ, et al. Application of small cell lung cancer molecular subtyping markers to small cell neuroendocrine carcinoma of the cervix: NEUROD1 as a poor prognostic factor. Am J Surg Pathol. 2024;48(3):364–72. [PMID: 37981832]
  58. Ouadah Y, Rojas ER, Riordan DP, et al. Rare pulmonary neuroendocrine cells are stem cells regulated by Rb, p53, and Notch. Cell. 2019;179(2):403–416423. [PMID: 31585080]
  59. Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol. 2024;155(Pt B):22–31. [PMID: 37258315]
  60. Kaur S, Bronson SM, Pal-Nath D, et al. Functions of thrombospondin-1 in the tumor microenvironment. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22094570 . [DOI: 10.3390/ijms22094570]

Grants

  1. (General Program/National Natural Science Foundation of China
  2. 82273233); Natural Science Foundation of Shanghai (22ZR1408900); National Natural Science Foundation of China (General Program/National Natural Science Foundation of China
  3. 81772777); Clinical Research Plan of SHDC (No. SHDC2020CR4079); Shanghai "Rising Stars of Medical Talent" Youth Development Program-Outstanding Youth Medical Talents (SHWJRS2021-99)/National Natural Science Foundation of China
  4. Shanghai Science/National Natural Science Foundation of China
  5. technology committee medical guidance program (18411963700)./National Natural Science Foundation of China

MeSH Term

Humans
Uterine Cervical Neoplasms
Female
Tumor Microenvironment
Single-Cell Analysis
Gene Expression Regulation, Neoplastic
Carcinoma, Neuroendocrine
Gene Regulatory Networks
Carcinoma, Small Cell
Sequence Analysis, RNA
Gene Expression Profiling

Word Cloud

Created with Highcharts 10.0.0neuroendocrinecarcinomacellsmallcervicalsequencingtumorstudygeneregulatorynetworksRNAmicroenvironmentSmallhighlyaggressivecharacterizedearlymetastasishighrecurrenceratepoorprognosisrepresentsfirstinstancesingle-cellconductedcervixworldwideAnalysisexpressionrevealedtranscriptionfactorTFF3drivedup-regulationELF3FurthermorefindingsindicatedmarkergenesassociateddifferedobservedlungintestineliverwithinGEOdatabasesuggestingtissue-specificoriginsmalignanciesOveralladdressessignificantresearchunderstandingvivoprovidesvaluableinsightsguidingradiotherapychemotherapytargetedtherapySingle-cellhighlightsuniqueCervicalcancerNeuroendocrineSingle-nucleusTumor

Similar Articles

Cited By

No available data.