Polyphenol-Derived Microbiota Metabolites and Cardiovascular Health: A Concise Review of Human Studies.

Ana Clara da C Pinaffi-Langley, Stefano Tarantini, Norman G Hord, Andriy Yabluchanskiy
Author Information
  1. Ana Clara da C Pinaffi-Langley: Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA. ORCID
  2. Stefano Tarantini: Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA. ORCID
  3. Norman G Hord: Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA. ORCID
  4. Andriy Yabluchanskiy: Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA. ORCID

Abstract

Polyphenols, plant-derived secondary metabolites, play crucial roles in plant stress responses, growth regulation, and environmental interactions. In humans, polyphenols are associated with various health benefits, particularly in cardiometabolic health. Despite growing evidence of polyphenols' health-promoting effects, their mechanisms remain poorly understood due to high interindividual variability in bioavailability and metabolism. Recent research highlights the bidirectional relationship between dietary polyphenols and the gut microbiota, which can influence polyphenol metabolism and, conversely, be modulated by polyphenol intake. In this concise review, we summarized recent advances in this area, with a special focus on isoflavones and ellagitannins and their corresponding metabotypes, and their effect on cardiovascular health. Human observational studies published in the past 10 years provide evidence for a consistent association of isoflavones and ellagitannins and their metabotypes with better cardiovascular risk factors. However, interventional studies with dietary polyphenols or isolated microbial metabolites indicate that the polyphenol-gut microbiota interrelationship is complex and not yet fully elucidated. Finally, we highlighted various pending research questions that will help identify effective targets for intervention with precision nutrition, thus maximizing individual responses to dietary and lifestyle interventions and improving human health.

Keywords

References

  1. J Am Heart Assoc. 2024 Jul 2;13(13):e034126 [PMID: 38934874]
  2. Mol Nutr Food Res. 2024 Jan;68(1):e2300472 [PMID: 37888840]
  3. Food Res Int. 2023 Nov;173(Pt 2):113470 [PMID: 37803793]
  4. Mol Nutr Food Res. 2016 Sep;60(9):1933-43 [PMID: 27060359]
  5. Am J Clin Nutr. 2009 Oct;90(4):1029-37 [PMID: 19710188]
  6. Antioxidants (Basel). 2022 Nov 05;11(11): [PMID: 36358562]
  7. Eur J Clin Nutr. 2015 Oct;69(10):1161-8 [PMID: 25782428]
  8. Am J Clin Nutr. 2004 May;79(5):727-47 [PMID: 15113710]
  9. J Nutr. 2006 Aug;136(8):2188-93 [PMID: 16857839]
  10. Food Funct. 2024 Mar 4;15(5):2422-2432 [PMID: 38329279]
  11. Database (Oxford). 2013 Oct 07;2013:bat070 [PMID: 24103452]
  12. Metabolism. 2015 Feb;64(2):236-43 [PMID: 25441251]
  13. J Nutr. 2014 Mar;144(3):344-51 [PMID: 24381220]
  14. Eur J Nutr. 2019 Nov;58(Suppl 2):37-47 [PMID: 31492975]
  15. Metabolites. 2023 Jul 28;13(8): [PMID: 37623839]
  16. Mol Nutr Food Res. 2019 Jan;63(2):e1800923 [PMID: 30471194]
  17. Nature. 2016 Dec 07;540(7634):579-582 [PMID: 27926730]
  18. PLoS One. 2016 Dec 1;11(12):e0167020 [PMID: 27907038]
  19. Nutrients. 2021 Dec 05;13(12): [PMID: 34959918]
  20. Adv Nutr. 2023 Mar;14(2):270-282 [PMID: 36796437]
  21. Adv Nutr. 2024 Dec;15(12):100329 [PMID: 39481540]
  22. Mol Nutr Food Res. 2019 Feb;63(4):e1800958 [PMID: 30471188]
  23. Neuroscience. 2024 Feb 6;538:46-58 [PMID: 38110170]
  24. Thromb Res. 2009 Mar;123(5):740-4 [PMID: 18786699]
  25. Biol Pharm Bull. 2015;38(2):325-30 [PMID: 25747993]
  26. Sci Rep. 2022 Nov 22;12(1):20114 [PMID: 36418419]
  27. J Biol Chem. 2006 Sep 15;281(37):27335-45 [PMID: 16840783]
  28. Front Nutr. 2019 Dec 20;6:188 [PMID: 31921881]
  29. Arch Biochem Biophys. 2018 Aug 1;651:43-51 [PMID: 29802820]
  30. Molecules. 2016 Aug 02;21(8): [PMID: 27490528]
  31. Oxid Med Cell Longev. 2017;2017:3831972 [PMID: 28357027]
  32. J Nutr. 2002 Dec;132(12):3577-84 [PMID: 12468591]
  33. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4531-8 [PMID: 20615997]
  34. Biomed Pharmacother. 2020 Oct;130:110714 [PMID: 34321158]
  35. Angew Chem Int Ed Engl. 2011 Jan 17;50(3):586-621 [PMID: 21226137]
  36. Am J Clin Nutr. 2005 Jan;81(1 Suppl):230S-242S [PMID: 15640486]
  37. Circ Res. 2018 Sep 14;123(7):825-848 [PMID: 30355078]
  38. J Cardiovasc Pharmacol. 2015 May;65(5):500-7 [PMID: 25636070]
  39. Int J Cardiol. 2022 Apr 1;352:158-164 [PMID: 35122909]
  40. Bioorg Med Chem. 2004 Mar 15;12(6):1559-67 [PMID: 15018930]
  41. Crit Rev Food Sci Nutr. 2024;64(9):2760-2772 [PMID: 36148848]
  42. Mol Nutr Food Res. 2015 Feb;59(2):323-33 [PMID: 25351805]
  43. Food Res Int. 2021 Apr;142:110189 [PMID: 33773665]
  44. Syst Appl Microbiol. 2007 Jan;30(1):16-26 [PMID: 17196483]
  45. Adv Nutr. 2017 Jul 14;8(4):558-570 [PMID: 28710143]
  46. Mol Nutr Food Res. 2012 May;56(5):784-96 [PMID: 22648625]
  47. Microbiologyopen. 2015 Feb;4(1):41-52 [PMID: 25515139]
  48. Am J Clin Nutr. 2011 Jan;93(1):62-72 [PMID: 21068351]
  49. FEMS Microbiol Lett. 2018 Oct 1;365(19): [PMID: 30184116]
  50. J Nutr. 2005 Dec;135(12):2786-92 [PMID: 16317121]
  51. J Altern Complement Med. 2018 Jul;24(7):701-708 [PMID: 29722549]
  52. J Agric Food Chem. 2011 Dec 28;59(24):12815-20 [PMID: 22060186]
  53. J Appl Microbiol. 2011 Jul;111(1):165-75 [PMID: 21457417]
  54. J Agric Food Chem. 2022 Aug 31;70(34):10521-10531 [PMID: 35981285]
  55. Compr Rev Food Sci Food Saf. 2018 Sep;17(5):1054-1112 [PMID: 33350159]
  56. Gut Microbes. 2016 May 3;7(3):216-34 [PMID: 26963713]
  57. Cell Rep Med. 2022 May 17;3(5):100633 [PMID: 35584623]
  58. Adv Nutr. 2011 Jul;2(4):317-24 [PMID: 22332073]
  59. BMC Endocr Disord. 2024 Mar 1;24(1):26 [PMID: 38429765]
  60. Biochem Pharmacol. 2017 Sep 1;139:82-93 [PMID: 28483461]
  61. Clin Nutr. 2018 Jun;37(3):897-905 [PMID: 28347564]
  62. Mol Nutr Food Res. 2020 May;64(9):e1900952 [PMID: 32196920]
  63. Nutrients. 2016 Jan 19;8(1): [PMID: 26797632]
  64. Food Funct. 2020 Apr 1;11(4):3432-3440 [PMID: 32236173]
  65. Molecules. 2023 Sep 01;28(17): [PMID: 37687232]
  66. Mol Nutr Food Res. 2017 May;61(5): [PMID: 27879044]
  67. Nat Metab. 2019 Jun;1(6):595-603 [PMID: 32694802]
  68. Front Nutr. 2023 Jan 05;9:1077534 [PMID: 36687672]
  69. J Agric Food Chem. 2014 Dec 24;62(51):12377-83 [PMID: 25437273]
  70. Mol Med. 2022 Feb 8;28(1):19 [PMID: 35135471]
  71. Food Funct. 2014 Aug;5(8):1779-84 [PMID: 24909569]
  72. Mol Nutr Food Res. 2022 Nov;66(21):e2101019 [PMID: 35118817]
  73. Gut. 2016 Feb;65(2):330-9 [PMID: 26338727]
  74. J Appl Physiol (1985). 2021 Mar 1;130(3):827-835 [PMID: 33356982]
  75. J Agric Food Chem. 2014 Jul 16;62(28):6535-8 [PMID: 24976365]
  76. Br J Nutr. 2017 Jan;117(2):260-266 [PMID: 28205492]
  77. J Agric Food Chem. 2019 Oct 9;67(40):11099-11107 [PMID: 31496244]
  78. Nutrients. 2021 Jan 19;13(1): [PMID: 33477894]
  79. Eur J Nutr. 2015 Apr;54(3):325-41 [PMID: 25672526]
  80. PLoS One. 2013 Nov 19;8(11):e79075 [PMID: 24260155]
  81. J Nutr. 2014 Jan;144(1):49-54 [PMID: 24225450]
  82. Hypertension. 2011 Apr;57(4):833-40 [PMID: 21300668]
  83. Mol Nutr Food Res. 2014 Apr;58(4):709-17 [PMID: 24273218]
  84. Arch Toxicol. 2023 Jan;97(1):3-38 [PMID: 36260104]
  85. Antioxidants (Basel). 2022 Jun 20;11(6): [PMID: 35740109]
  86. Free Radic Biol Med. 2003 May 15;34(10):1271-82 [PMID: 12726915]
  87. Cell Host Microbe. 2024 Nov 13;32(11):1887-1896.e8 [PMID: 39471822]
  88. Nat Microbiol. 2020 Jan;5(1):56-66 [PMID: 31686027]
  89. Anaerobe. 2010 Oct;16(5):510-5 [PMID: 20304079]
  90. Nutrients. 2019 Sep 16;11(9): [PMID: 31527435]
  91. Am J Clin Nutr. 2005 Jan;81(1 Suppl):292S-297S [PMID: 15640493]
  92. Am J Clin Nutr. 2021 Jul 1;114(1):203-213 [PMID: 33709111]
  93. Acta Pharmacol Sin. 2024 Nov;45(11):2277-2289 [PMID: 38886550]
  94. Br J Nutr. 2017 May;117(10):1403-1413 [PMID: 28661316]
  95. Adv Nutr. 2022 Dec 22;13(6):2070-2083 [PMID: 36190328]
  96. J Nutr. 2000 Aug;130(8S Suppl):2073S-85S [PMID: 10917926]
  97. Front Nutr. 2021 Jun 28;8:689456 [PMID: 34268328]
  98. Eur J Clin Nutr. 2022 Feb;76(2):297-308 [PMID: 34117375]
  99. Am J Clin Nutr. 2016 Mar;103(3):694-702 [PMID: 26843154]
  100. Curr Opin Biotechnol. 2013 Apr;24(2):220-5 [PMID: 23040410]
  101. Pharmacol Res. 2020 Mar;153:104655 [PMID: 31996327]
  102. Food Funct. 2024 Mar 18;15(6):2814-2835 [PMID: 38414364]

Grants

  1. R01AG075834, R21AG080775, R03AG070479, K01AG073614/NIA NIH HHS
  2. 24DIVSUP1282484, CDA941290, 24TPA1299954/American Heart Association
  3. T32AG052363/NIA-supported Geroscience Training Program in Oklahoma
  4. P30AG050911/NIA-supported Oklahoma Nathan Shock Center
  5. 1P20GM125528/Cellular and Molecular GeroScience CoBRE

Word Cloud

Created with Highcharts 10.0.0healthpolyphenolsmetabolitesdietarymicrobiotacardiovascularresponsesvariousevidencemetabolismresearchgutpolyphenolisoflavonesellagitanninsmetabotypesHumanstudiesPolyphenolsplant-derivedsecondaryplaycrucialrolesplantstressgrowthregulationenvironmentalinteractionshumansassociatedbenefitsparticularlycardiometabolicDespitegrowingpolyphenols'health-promotingeffectsmechanismsremainpoorlyunderstoodduehighinterindividualvariabilitybioavailabilityRecenthighlightsbidirectionalrelationshipcaninfluenceconverselymodulatedintakeconcisereviewsummarizedrecentadvancesareaspecialfocuscorrespondingeffectobservationalpublishedpast10yearsprovideconsistentassociationbetterriskfactorsHoweverinterventionalisolatedmicrobialindicatepolyphenol-gutinterrelationshipcomplexyetfullyelucidatedFinallyhighlightedpendingquestionswillhelpidentifyeffectivetargetsinterventionprecisionnutritionthusmaximizingindividuallifestyleinterventionsimprovinghumanPolyphenol-DerivedMicrobiotaMetabolitesCardiovascularHealth:ConciseReviewStudiesequolsurolithins

Similar Articles

Cited By

No available data.