Synthesis of Temporin-SHa Retro Analogs with Lysine Addition/Substitution and Antibiotic Conjugation to Enhance Antibacterial, Antifungal, and Anticancer Activities.

Shahzad Nazir, Arif Iftikhar Khan, Rukesh Maharjan, Sadiq Noor Khan, Muhammad Adnan Akram, Marc Maresca, Farooq-Ahmad Khan, Farzana Shaheen
Author Information
  1. Shahzad Nazir: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  2. Arif Iftikhar Khan: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  3. Rukesh Maharjan: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  4. Sadiq Noor Khan: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  5. Muhammad Adnan Akram: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
  6. Marc Maresca: Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13013 Marseille, France. ORCID
  7. Farooq-Ahmad Khan: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. ORCID
  8. Farzana Shaheen: Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.

Abstract

In the face of rising the threat of resistant pathogens, antimicrobial peptides (AMPs) offer a viable alternative to the current challenge due to their broad-spectrum activity. This study focuses on enhancing the efficacy of temporin-SHa derived NST-2 peptide (), which is known for its antimicrobial and anticancer activities. We synthesized new analogs of using three strategies, i.e., retro analog preparation, lysine addition/substitution, and levofloxacin conjugation. Analogs were tested in terms of their antibacterial, antifungal, and anticancer activities. Analog corresponding to retro analog of NST-2, was found to be more active but also more hemolytic, reducing its selectivity index and therapeutic potential. The addition of lysine (in analog ) and lysine substitution (in analog ) reduced the hemolytic effect resulting in safer peptides. Conjugation with levofloxacin on the lysine side chain (in analogs and ) decreased the hemolytic effect but unfortunately also the antimicrobial and anticancer activities of the analogs. Oppositely, conjugation with levofloxacin at the N-terminus of the peptide via the ��-alanine linker (in analogs and ) increased their antimicrobial and anticancer activity but also their hemolytic effect, resulting in less safe/selective analogs. In conclusion, lysine addition/substitution and levofloxacin conjugation, at least at the N-terminal position through the ��-alanine linker, were found to enhance the therapeutic potential of retro analogs of NST-2 whereas other modifications decreased the activity or increased the toxicity of the peptides.

Keywords

References

  1. J Immunol. 2003 Feb 1;170(3):1362-73 [PMID: 12538696]
  2. Biomolecules. 2019 Oct 11;9(10): [PMID: 31614561]
  3. PLoS One. 2017 Mar 20;12(3):e0174024 [PMID: 28319176]
  4. J Med Chem. 2021 Jun 10;64(11):7809-7838 [PMID: 34043358]
  5. Chem Biol Drug Des. 2019 May;93(5):724-736 [PMID: 30582286]
  6. Antibiotics (Basel). 2023 Mar 07;12(3): [PMID: 36978399]
  7. Drug Discov Today. 2017 Jun;22(6):919-926 [PMID: 28212948]
  8. Antibiotics (Basel). 2024 Aug 11;13(8): [PMID: 39200058]
  9. J Med Chem. 2018 Apr 12;61(7):2707-2724 [PMID: 29543461]
  10. Front Chem. 2021 Nov 12;9:802120 [PMID: 34869243]
  11. J Innate Immun. 2012;4(4):327-36 [PMID: 22441679]
  12. J Biol Chem. 2011 Jul 8;286(27):24394-406 [PMID: 21586570]
  13. PLoS One. 2013 Jul 29;8(7):e68723 [PMID: 23922660]
  14. Curr Top Med Chem. 2016;16(1):4-15 [PMID: 26139110]
  15. Eur J Med Chem. 2017 Dec 1;141:26-36 [PMID: 29028529]
  16. J Clin Microbiol. 2000 Jul;38(7):2465-7 [PMID: 10878026]
  17. Antimicrob Agents Chemother. 2008 Dec;52(12):4463-5 [PMID: 18852279]
  18. Curr Opin Chem Biol. 2008 Jun;12(3):292-6 [PMID: 18423417]
  19. Cell Mol Life Sci. 2006 May;63(9):1060-9 [PMID: 16572270]
  20. J Biol Chem. 2008 Aug 22;283(34):22907-17 [PMID: 18550541]
  21. Nucleic Acids Res. 2022 Jul 5;50(W1):W90-W98 [PMID: 35544232]
  22. Probiotics Antimicrob Proteins. 2022 Apr;14(2):391-405 [PMID: 35092568]
  23. J Colloid Interface Sci. 2015 Jul 1;449:136-42 [PMID: 25490856]
  24. Biochemistry. 2000 Dec 26;39(51):15765-74 [PMID: 11123901]
  25. Biochim Biophys Acta. 2009 Aug;1788(8):1600-9 [PMID: 19394305]
  26. Chem Rev. 2018 Feb 14;118(3):919-988 [PMID: 29292991]
  27. Microbiol Spectr. 2022 Apr 27;10(2):e0201321 [PMID: 35289673]
  28. FEBS Lett. 2020 Jan;594(1):104-113 [PMID: 31356683]
  29. Biomolecules. 2022 May 31;12(6): [PMID: 35740895]
  30. Chem Rev. 1998 Apr 2;98(2):763-796 [PMID: 11848914]
  31. Antimicrob Agents Chemother. 2013 Jun;57(6):2457-66 [PMID: 23478966]
  32. Front Chem. 2021 May 20;9:674705 [PMID: 34095086]
  33. Biopolymers. 2005;80(2-3):67-84 [PMID: 15729688]
  34. Antibiotics (Basel). 2022 Mar 20;11(3): [PMID: 35326879]
  35. Front Microbiol. 2017 Feb 02;8:124 [PMID: 28210246]
  36. Front Mol Biosci. 2022 Oct 13;9:1001508 [PMID: 36310605]
  37. Eur J Med Chem. 2021 Jan 1;209:112863 [PMID: 33032082]
  38. Eur J Biochem. 1996 Dec 15;242(3):788-92 [PMID: 9022710]
  39. Appl Environ Microbiol. 2022 Dec 13;88(23):e0161722 [PMID: 36416555]
  40. Peptides. 2018 Aug;106:68-82 [PMID: 30026168]
  41. Surg Infect (Larchmt). 2020 May;21(4):309-322 [PMID: 31804896]
  42. Peptides. 2012 Jan;33(1):9-17 [PMID: 22198367]
  43. Int J Mol Sci. 2016 May 11;17(5): [PMID: 27187357]
  44. Acc Chem Res. 2008 Oct;41(10):1231-2 [PMID: 18937394]
  45. Biotechnol Adv. 2018 Nov 15;36(7):1917-1927 [PMID: 30063950]
  46. Biophys J. 1992 May;61(5):1435-9 [PMID: 1600087]
  47. Eur J Pharm Sci. 2020 Mar 1;144:105197 [PMID: 31862311]
  48. Biochim Biophys Acta. 2009 Aug;1788(8):1610-9 [PMID: 19422786]
  49. Eur J Med Chem. 2015 Jun 5;97:173-80 [PMID: 25969169]
  50. ACS Med Chem Lett. 2015 Jan 07;6(3):271-5 [PMID: 25815145]
  51. Bioorg Chem. 2023 Sep;138:106626 [PMID: 37295239]
  52. ChemMedChem. 2019 Jul 3;14(13):1283-1290 [PMID: 31087626]
  53. Infect Drug Resist. 2019 Jun 14;12:1629-1647 [PMID: 31354312]
  54. Molecules. 2017 Jun 08;22(6): [PMID: 28594345]
  55. Chem Soc Rev. 2020 Jun 7;49(11):3262-3277 [PMID: 32255135]
  56. Pharmaceutics. 2021 Dec 02;13(12): [PMID: 34959346]
  57. Biomolecules. 2023 Jun 12;13(6): [PMID: 37371561]
  58. J Med Chem. 2022 Nov 24;65(22):15085-15101 [PMID: 36335509]
  59. J Med Chem. 2021 Aug 12;64(15):11675-11694 [PMID: 34296619]
  60. Antimicrob Agents Chemother. 2014;58(4):1987-96 [PMID: 24419338]
  61. Int J Mol Sci. 2023 Mar 12;24(6): [PMID: 36982501]
  62. Eur J Med Chem. 2012 Feb;48:179-91 [PMID: 22209564]

Word Cloud

Created with Highcharts 10.0.0analogsantimicrobialanticancerlysinelevofloxacinpeptidesanaloghemolyticactivityNST-2activitiesretroconjugationalsoeffectAMPstemporin-SHapeptideaddition/substitutionAnalogsantibacterialantifungalfoundtherapeuticpotentialresultingConjugationdecreased��-alaninelinkerincreasedfacerisingthreatresistantpathogensofferviablealternativecurrentchallengeduebroad-spectrumstudyfocusesenhancingefficacyderivedknownsynthesizednewusingthreestrategiesiepreparationtestedtermsAnalogcorrespondingactivereducingselectivityindexadditionsubstitutionreducedsafersidechainunfortunatelyOppositelyN-terminusvialesssafe/selectiveconclusionleastN-terminalpositionenhancewhereasmodificationstoxicitySynthesisTemporin-SHaRetroLysineAddition/SubstitutionAntibioticEnhanceAntibacterialAntifungalAnticancerActivities

Similar Articles

Cited By