Genome-Wide Identification and Analysis of Transcription Factor Family Genes Involved in Cold Stress Tolerance in Winter Rapeseed ( L.).
Yanxia Xu, Li Ma, Xiucun Zeng, Yaozhao Xu, Xiaolei Tao, Abbas Muhammad Fahim, Lijun Liu, Junyan Wu, Gang Yang, Yuanyuan Pu, Tingting Fan, Wangtian Wang, Wancang Sun
Author Information
Yanxia Xu: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Li Ma: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. ORCID
Xiucun Zeng: College of Life Sciences and Engineering, Hexi University, Zhangye 734000, China.
Yaozhao Xu: College of Life Sciences and Engineering, Hexi University, Zhangye 734000, China.
Xiaolei Tao: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Abbas Muhammad Fahim: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. ORCID
Lijun Liu: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Junyan Wu: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Gang Yang: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Yuanyuan Pu: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Tingting Fan: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Wangtian Wang: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Wancang Sun: State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
中文译文
English
TCP transcription factors are important during plant growth and stress responses. However, their role in the cold stress response of L. remains poorly understood. In this research, we identified the gene family in to learn the features of the gene family, functionally annotating the interacting proteins of TCP4 and analyzing their expression levels. Our results illustrated the presence of 19 members of the family in , exhibiting molecular weights ranging from 27,367.45 to 59,433.64 Da. All identified proteins were classified as unstable, with isoelectric points ranging from 5.5 to 9.48. Subcellular localization forecasted that TCP proteins were all positioned in the nucleus. The gene structure is relatively simple, with only seven members possessing introns, and none of the members contain UTR regions. comprise hormone-, light-, and stress-responsive elements. We found that the frequency of photoresponsive elements was greatest in the promoter region, suggesting that genes are regulated by light signals and function synergistically with plant growth and development. In addition, five candidate interaction proteins of were identified using yeast two-hybrid screening. RNA-Seq and q-PCR analyses of the interacting genes revealed differential expression of family genes across various tissues following cold stress. Significant responses were observed under low-temperature stress, drought stress, and rehydration treatment, suggesting that these genes play crucial roles as regulators of the molecular network mechanisms responding to stress. This study enhances our understanding of the family and provides significant insights into the stress tolerance mechanisms of
Int J Mol Sci. 2018 Nov 20;19(11):
[PMID: 30463287 ]
Int J Mol Sci. 2023 May 27;24(11):
[PMID: 37298332 ]
Proc Natl Acad Sci U S A. 1990 Feb;87(4):1406-10
[PMID: 2137613 ]
Front Plant Sci. 2016 Dec 22;7:1937
[PMID: 28066489 ]
Plant Physiol. 2005 Dec;139(4):2006-16
[PMID: 16286447 ]
Nucleic Acids Res. 2002 Dec 1;30(23):5036-55
[PMID: 12466527 ]
Int J Mol Sci. 2024 Aug 24;25(17):
[PMID: 39273148 ]
Plant Mol Biol. 2005 Sep;59(1):191-203
[PMID: 16217612 ]
Front Plant Sci. 2022 Sep 02;13:994567
[PMID: 36119616 ]
Biochem J. 2011 Apr 1;435(1):143-55
[PMID: 21241251 ]
Zhongguo Zhong Yao Za Zhi. 2024 Jan;49(2):379-388
[PMID: 38403314 ]
Plant J. 2012 Jun;70(6):978-90
[PMID: 22348445 ]
PLoS One. 2021 Feb 8;16(2):e0245494
[PMID: 33556109 ]
PLoS One. 2014 Mar 25;9(3):e91357
[PMID: 24667308 ]
Plant Sci. 2014 Mar;217-218:109-19
[PMID: 24467902 ]
Sci Rep. 2016 Jun 30;6:29072
[PMID: 27356970 ]
Plant J. 2011 Oct;68(1):147-58
[PMID: 21668538 ]
Int J Mol Sci. 2019 Jun 05;20(11):
[PMID: 31195663 ]
Plant J. 2021 Feb;105(4):1072-1082
[PMID: 33217085 ]
Plants (Basel). 2024 Jul 31;13(15):
[PMID: 39124235 ]
Int J Mol Sci. 2019 Mar 01;20(5):
[PMID: 30832221 ]
Biochem Genet. 2022 Feb;60(1):204-222
[PMID: 34156635 ]
Genet Mol Res. 2016 May 23;15(2):
[PMID: 27323069 ]
Sci Rep. 2015 Apr 29;5:9998
[PMID: 25925167 ]
Nat Protoc. 2008;3(2):153-62
[PMID: 18274516 ]
Methods Mol Biol. 2016;1374:115-40
[PMID: 26519403 ]
Biochem J. 1996 Jul 15;317 ( Pt 2):329-42
[PMID: 8713055 ]
BMC Genomics. 2014 Oct 01;15:832
[PMID: 25270086 ]
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9101-6
[PMID: 16754863 ]
Sheng Wu Gong Cheng Xue Bao. 2024 Jan 25;40(1):226-238
[PMID: 38258643 ]
Front Plant Sci. 2023 Oct 30;14:1274567
[PMID: 37965013 ]
Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49
[PMID: 25953851 ]
BMC Genomics. 2019 Oct 29;20(1):786
[PMID: 31664916 ]
Mol Plant. 2020 Aug 3;13(8):1194-1202
[PMID: 32585190 ]
Genes (Basel). 2020 Nov 20;11(11):
[PMID: 33233827 ]
Front Genet. 2022 Jan 21;12:753624
[PMID: 35126448 ]
Sheng Wu Gong Cheng Xue Bao. 2022 Aug 25;38(8):2974-2988
[PMID: 36002425 ]
J Exp Bot. 2020 Feb 19;71(4):1585-1597
[PMID: 31740930 ]
BMC Plant Biol. 2014 Jun 06;14:157
[PMID: 24903607 ]
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296
[PMID: 33885785 ]
Curr Opin Plant Biol. 2016 Oct;33:33-41
[PMID: 27310029 ]
J Exp Bot. 2012 Mar;63(5):1937-49
[PMID: 22155632 ]
Trends Plant Sci. 2010 Jan;15(1):31-9
[PMID: 19963426 ]
Plant Sci. 2019 Oct;287:110197
[PMID: 31481190 ]
Trends Genet. 2003 Jul;19(7):409-13
[PMID: 12850447 ]
Plants (Basel). 2024 Feb 26;13(5):
[PMID: 38475487 ]
BMC Plant Biol. 2023 Apr 27;23(1):222
[PMID: 37101166 ]
Int J Mol Sci. 2021 Sep 24;22(19):
[PMID: 34638610 ]
Plant Physiol Biochem. 2020 Jan;146:374-383
[PMID: 31794898 ]
Plant Biotechnol J. 2017 Oct;15(10):1284-1294
[PMID: 28233945 ]
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419
[PMID: 33125078 ]
Front Genet. 2019 Dec 20;10:1276
[PMID: 31921312 ]
Front Plant Sci. 2022 Dec 08;13:1068969
[PMID: 36570938 ]
Curr Biol. 2014 Aug 18;24(16):1923-8
[PMID: 25127215 ]
Methods Mol Biol. 1999;112:531-52
[PMID: 10027275 ]
Genes (Basel). 2019 Aug 26;10(9):
[PMID: 31455029 ]
Nucleic Acids Res. 2002 Jan 1;30(1):325-7
[PMID: 11752327 ]
Sci Rep. 2017 Aug 30;7(1):10016
[PMID: 28855620 ]
Plant J. 2012 Aug;71(4):684-97
[PMID: 22507274 ]
Front Plant Sci. 2024 Apr 08;15:1382790
[PMID: 38654900 ]
Science. 2000 Dec 15;290(5499):2105-10
[PMID: 11118137 ]
Brassica rapa
Transcription Factors
Plant Proteins
Cold-Shock Response
Gene Expression Regulation, Plant
Multigene Family
Phylogeny
Promoter Regions, Genetic
Transcription Factors
Plant Proteins