The Evolving Role of Neutrophils and Neutrophil Extracellular Traps (NETs) in Obesity and Related Diseases: Recent Insights and Advances.

Serena Altamura, Francesca Lombardi, Paola Palumbo, Benedetta Cinque, Claudio Ferri, Rita Del Pinto, Davide Pietropaoli
Author Information
  1. Serena Altamura: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  2. Francesca Lombardi: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  3. Paola Palumbo: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  4. Benedetta Cinque: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  5. Claudio Ferri: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  6. Rita Del Pinto: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID
  7. Davide Pietropaoli: Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy. ORCID

Abstract

Obesity is a chronic, multifactorial disease characterized by persistent low-grade tissue and systemic inflammation. Fat accumulation in adipose tissue (AT) leads to stress and dysfunctional adipocytes, along with the infiltration of immune cells, which initiates and sustains inflammation. Neutrophils are the first immune cells to infiltrate AT during high-fat diet (HFD)-induced obesity. Emerging evidence suggests that the formation and release of neutrophil extracellular traps (NETs) play a significant role in the progression of obesity and related diseases. Additionally, obesity is associated with an imbalance in gut microbiota and increased intestinal barrier permeability, resulting in the translocation of live bacteria, bacterial deoxyribonucleic acid (DNA), lipopolysaccharides (LPS), and pro-inflammatory cytokines into the bloodstream and AT, thereby contributing to metabolic inflammation. Recent research has also shown that short-chain fatty acids (SCFAs), produced by gut microbiota, can influence various functions of neutrophils, including their activation, migration, and the generation of inflammatory mediators. This review comprehensively summarizes recent advancements in understanding the role of neutrophils and NET formation in the pathophysiology of obesity and related disorders while also focusing on updated potential therapeutic approaches targeting NETs based on studies conducted in humans and animal models.

Keywords

References

  1. Microb Pathog. 2024 Nov;196:107001 [PMID: 39384024]
  2. Endocrinology. 2013 Mar;154(3):1069-79 [PMID: 23372021]
  3. Eur J Pharmacol. 2018 Jul 15;831:52-59 [PMID: 29750914]
  4. Obes Rev. 2016 Apr;17(4):297-312 [PMID: 26712364]
  5. Mol Med. 2019 May 2;25(1):16 [PMID: 31046673]
  6. J Leukoc Biol. 2012 Oct;92(4):841-9 [PMID: 22802447]
  7. Biomolecules. 2020 Feb 13;10(2): [PMID: 32069832]
  8. Int J Obes (Lond). 2023 Aug;47(8):750-757 [PMID: 37258646]
  9. Eur J Pharmacol. 2023 Apr 15;945:175618 [PMID: 36841284]
  10. Int Immunopharmacol. 2022 Sep;110:108983 [PMID: 35750016]
  11. Circ Res. 2012 Apr 13;110(8):1052-6 [PMID: 22394519]
  12. Gastroenterology. 2017 May;152(7):1671-1678 [PMID: 28192102]
  13. Am J Pathol. 2009 Oct;175(4):1473-82 [PMID: 19729473]
  14. JSM Allergy Asthma. 2018;3(1): [PMID: 30542672]
  15. Int J Biol Sci. 2024 Jun 17;20(9):3515-3529 [PMID: 38993565]
  16. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7326-7337 [PMID: 32170015]
  17. Gut Microbes. 2021 Jan-Dec;13(1):1968257 [PMID: 34494943]
  18. Cells. 2022 Feb 21;11(4): [PMID: 35203397]
  19. Circ Res. 2008 Feb 1;102(2):209-17 [PMID: 17991882]
  20. Acta Diabetol. 2015 Jun;52(3):497-503 [PMID: 25387570]
  21. Nat Rev Immunol. 2017 Apr;17(4):219-232 [PMID: 28260787]
  22. J Immunol. 2002 May 1;168(9):4701-10 [PMID: 11971020]
  23. FASEB J. 2019 Nov;33(11):11821-11835 [PMID: 31355683]
  24. Trends Immunol. 2019 Jul;40(7):584-597 [PMID: 31153737]
  25. Front Immunol. 2020 Sep 24;11:571085 [PMID: 33072112]
  26. Clin Res Hepatol Gastroenterol. 2022 Jan;46(1):101697 [PMID: 33848669]
  27. Sci Rep. 2017 Aug 9;7(1):7633 [PMID: 28794498]
  28. Immunity. 2018 Dec 18;49(6):1062-1076.e6 [PMID: 30446388]
  29. Sci Immunol. 2018 Aug 24;3(26): [PMID: 30143555]
  30. J Clin Invest. 2016 May 2;126(5):1612-20 [PMID: 27135878]
  31. J Cell Physiol. 2018 Jan;233(1):88-97 [PMID: 28181253]
  32. Protein Cell. 2021 May;12(5):360-373 [PMID: 33346905]
  33. Biomolecules. 2024 Mar 29;14(4): [PMID: 38672433]
  34. Int J Mol Sci. 2021 Mar 18;22(6): [PMID: 33803773]
  35. J Lipid Res. 2008 Sep;49(9):1894-903 [PMID: 18503031]
  36. J Cell Biol. 2010 Nov 1;191(3):677-91 [PMID: 20974816]
  37. Int J Mol Sci. 2016 Mar 25;17(4):450 [PMID: 27023530]
  38. Cardiovasc Diabetol. 2017 Aug 8;16(1):98 [PMID: 28789657]
  39. Obesity (Silver Spring). 2009 Nov;17(11):2014-8 [PMID: 19390527]
  40. J Thromb Haemost. 2024 May;22(5):1496-1509 [PMID: 38325598]
  41. PLoS One. 2017 May 9;12(5):e0176472 [PMID: 28486563]
  42. Blood. 2013 Oct 17;122(16):2784-94 [PMID: 24009232]
  43. Front Immunol. 2018 Feb 09;9:169 [PMID: 29479350]
  44. Ann Rheum Dis. 2018 Dec;77(12):1790-1798 [PMID: 30120096]
  45. Acta Diabetol. 2018 Jun;55(6):593-601 [PMID: 29546579]
  46. J Immunol Res. 2020 Jun 30;2020:4570219 [PMID: 32671116]
  47. Cell Immunol. 2017 May;315:18-26 [PMID: 28285710]
  48. Blood. 2019 May 16;133(20):2178-2185 [PMID: 30898862]
  49. J Biol Chem. 2001 Jun 15;276(24):21129-35 [PMID: 11274165]
  50. Gut. 2020 Oct;69(10):1796-1806 [PMID: 32317332]
  51. Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E8-13 [PMID: 13129857]
  52. Inflammation. 2020 Jun;43(3):1054-1064 [PMID: 32002713]
  53. Nat Rev Dis Primers. 2017 Jun 15;3:17034 [PMID: 28617414]
  54. Int J Mol Sci. 2021 Jun 01;22(11): [PMID: 34206021]
  55. Dev Cell. 2018 Mar 12;44(5):542-553 [PMID: 29533770]
  56. Trends Cardiovasc Med. 2024 May;34(4):267-275 [PMID: 36963476]
  57. J Immunol. 2009 Dec 1;183(11):7514-22 [PMID: 19917676]
  58. Sci Rep. 2019 Oct 11;9(1):14678 [PMID: 31604985]
  59. Cancer Discov. 2016 Aug;6(8):852-69 [PMID: 27246539]
  60. Metabolism. 2008 Oct;57(10):1375-9 [PMID: 18803941]
  61. Am J Physiol Cell Physiol. 2021 Mar 1;320(3):C375-C391 [PMID: 33356944]
  62. Acta Biochim Pol. 2019 Mar 4;66(1):1-12 [PMID: 30831575]
  63. Physiol Rev. 2020 Jan 1;100(1):171-210 [PMID: 31487233]
  64. Nutrients. 2023 Jan 05;15(2): [PMID: 36678142]
  65. Arterioscler Thromb Vasc Biol. 2021 Jun;41(6):2038-2048 [PMID: 33827260]
  66. Eur J Haematol. 2006 Jun;76(6):516-20 [PMID: 16696775]
  67. Obes Rev. 2016 Jan;17(1):1-17 [PMID: 26667065]
  68. Sci Rep. 2018 Mar 20;8(1):4881 [PMID: 29559676]
  69. Diabetes Care. 2012 Nov;35(11):2373-6 [PMID: 22912422]
  70. Biomolecules. 2019 Jan 18;9(1): [PMID: 30669408]
  71. J Atheroscler Thromb. 2017 Jul 1;24(7):660-672 [PMID: 28552897]
  72. J Endocr Soc. 2020 Feb 20;4(2):bvz039 [PMID: 32099951]
  73. Atherosclerosis. 2018 Apr;271:203-213 [PMID: 29524863]
  74. Biomedicines. 2020 Jun 08;8(6): [PMID: 32521775]
  75. Circ Res. 2021 Apr 2;128(7):951-968 [PMID: 33793327]
  76. J Physiol. 2017 Jan 15;595(2):541-555 [PMID: 27510655]
  77. Cell Rep. 2018 Mar 13;22(11):2924-2936 [PMID: 29539421]
  78. Gut. 2012 Mar;61(3):416-26 [PMID: 21813474]
  79. Nat Rev Immunol. 2018 Feb;18(2):134-147 [PMID: 28990587]
  80. Science. 2004 Mar 5;303(5663):1532-5 [PMID: 15001782]
  81. Int J Obes (Lond). 2006 Jun;30(6):906-11 [PMID: 16418751]
  82. Blood. 2009 Nov 19;114(21):4613-23 [PMID: 19696199]
  83. Crit Rev Food Sci Nutr. 2023 Nov;63(33):11449-11481 [PMID: 35708057]
  84. Front Endocrinol (Lausanne). 2020 May 27;11:327 [PMID: 32528415]
  85. Front Immunol. 2012 Oct 04;3:307 [PMID: 23060885]
  86. Mol Biol Rep. 2022 Apr;49(4):3225-3236 [PMID: 35066770]
  87. Nat Med. 2015 Jul;21(7):815-9 [PMID: 26076037]
  88. Biomedicines. 2023 Nov 12;11(11): [PMID: 38002033]
  89. Blood. 2008 Aug 15;112(4):1461-71 [PMID: 18490516]
  90. Int J Mol Sci. 2023 Apr 04;24(7): [PMID: 37047729]
  91. Front Immunol. 2018 Jan 23;9:37 [PMID: 29410669]
  92. Front Immunol. 2021 Jan 11;11:594150 [PMID: 33505393]
  93. Biochemistry (Mosc). 2020 Oct;85(10):1178-1190 [PMID: 33202203]
  94. Nat Immunol. 2014 Jul;15(7):602-11 [PMID: 24940954]
  95. Front Microbiol. 2018 Aug 14;9:1835 [PMID: 30154767]
  96. Annu Rev Physiol. 2024 Feb 12;86:199-223 [PMID: 38345903]
  97. Foods. 2024 Sep 30;13(19): [PMID: 39410163]
  98. EMBO J. 2016 Mar 1;35(5):536-52 [PMID: 26843485]
  99. Cardiovasc Res. 2022 Oct 21;118(13):2737-2753 [PMID: 34648022]
  100. BJC Rep. 2023 Dec 12;1(1):20 [PMID: 39516686]
  101. Diabetes. 2022 Dec 1;71(12):2739-2750 [PMID: 36095260]
  102. J Clin Invest. 2008 Oct;118(10):3491-502 [PMID: 18787642]
  103. Circulation. 2004 Aug 31;110(9):1134-9 [PMID: 15326065]
  104. Nat Commun. 2024 Jun 27;15(1):5434 [PMID: 38937454]
  105. N Engl J Med. 2017 Jan 19;376(3):254-266 [PMID: 28099824]
  106. J Cell Biol. 2009 Jan 26;184(2):205-13 [PMID: 19153223]
  107. Lipids Health Dis. 2021 Jul 7;20(1):65 [PMID: 34233682]
  108. Cell Death Dis. 2020 May 18;11(5):379 [PMID: 32424179]
  109. Physiol Rev. 2019 Oct 1;99(4):1701-1763 [PMID: 31339053]
  110. PLoS One. 2018 May 3;13(5):e0196423 [PMID: 29723248]
  111. Bioimpacts. 2015;5(1):3-8 [PMID: 25901291]
  112. Nutrients. 2024 Apr 30;16(9): [PMID: 38732619]
  113. J Leukoc Biol. 2020 Jul;108(1):377-396 [PMID: 32202340]
  114. Nat Rev Endocrinol. 2019 May;15(5):288-298 [PMID: 30814686]
  115. PLoS One. 2016 Dec 22;11(12):e0168647 [PMID: 28005949]
  116. Int J Mol Sci. 2022 Aug 15;23(16): [PMID: 36012397]
  117. Hepatology. 2018 Oct;68(4):1347-1360 [PMID: 29631332]
  118. Nutrients. 2019 Nov 07;11(11): [PMID: 31703257]
  119. Curr Gastroenterol Rep. 2023 Feb;25(2):31-44 [PMID: 36469257]
  120. Int J Mol Sci. 2023 Oct 31;24(21): [PMID: 37958788]
  121. Nat Chem Biol. 2011 Feb;7(2):75-7 [PMID: 21170021]
  122. Physiol Rep. 2015 Sep;3(9): [PMID: 26341995]
  123. Arch Med Res. 2017 Nov;48(8):735-753 [PMID: 29292011]
  124. Dis Markers. 2015;2015:761939 [PMID: 26451069]
  125. Obes Surg. 2018 Jun;28(6):1611-1621 [PMID: 29238916]
  126. Diabetes. 2016 Apr;65(4):1061-71 [PMID: 26740598]
  127. Nat Med. 2012 Sep;18(9):1407-12 [PMID: 22863787]
  128. Nat Rev Endocrinol. 2023 May;19(5):258-271 [PMID: 36650295]
  129. Eur J Pharmacol. 2016 Aug 15;785:50-58 [PMID: 25987417]
  130. Int J Obes (Lond). 2006 Sep;30(9):1347-55 [PMID: 16534530]
  131. J Clin Endocrinol Metab. 2024 Oct 15;109(11):2709-2719 [PMID: 39040013]
  132. Cell. 2016 Jun 2;165(6):1332-1345 [PMID: 27259147]
  133. Cells. 2023 Mar 02;12(5): [PMID: 36899929]
  134. Eur J Nutr. 2020 Oct;59(7):2969-2983 [PMID: 31729622]
  135. Front Immunol. 2020 Oct 16;11:571731 [PMID: 33178196]
  136. Physiol Rev. 2019 Apr 1;99(2):1223-1248 [PMID: 30758246]
  137. Int J Mol Sci. 2022 Jan 20;23(3): [PMID: 35163038]
  138. Int J Obes (Lond). 2015 Jan;39(1):26-32 [PMID: 25388404]
  139. Mol Biol Rep. 2018 Oct;45(5):1245-1252 [PMID: 30056589]
  140. Cell Death Differ. 2018 Mar;25(3):486-541 [PMID: 29362479]
  141. Biomed Pharmacother. 2023 Dec 31;169:115821 [PMID: 37952355]
  142. Exp Mol Med. 2013 Dec 06;45:e66 [PMID: 24310172]
  143. Cell Metab. 2013 Apr 2;17(4):534-48 [PMID: 23562077]
  144. Cardiovasc Diabetol. 2019 Apr 16;18(1):49 [PMID: 30992036]
  145. Cancer Lett. 2023 May 28;562:216155 [PMID: 37030634]
  146. Nat Rev Immunol. 2017 May;17(5):306-321 [PMID: 28317925]
  147. Front Immunol. 2016 Aug 12;7:302 [PMID: 27570525]
  148. Nat Rev Immunol. 2020 Jan;20(1):40-54 [PMID: 31388093]
  149. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7265-70 [PMID: 12756299]
  150. J Diabetes Metab Disord. 2021 Aug 08;20(2):1289-1300 [PMID: 34900780]
  151. Cell Death Differ. 2019 Mar;26(3):395-408 [PMID: 30622307]
  152. Br J Nutr. 2020 May 28;123(10):1127-1137 [PMID: 32008579]
  153. Am J Physiol Endocrinol Metab. 2019 Dec 1;317(6):E1063-E1069 [PMID: 31593502]

MeSH Term

Humans
Extracellular Traps
Neutrophils
Obesity
Animals
Gastrointestinal Microbiome
Inflammation
Adipose Tissue

Word Cloud

Created with Highcharts 10.0.0obesityinflammationATNETsgutneutrophilsObesitytissueimmunecellsNeutrophilsformationneutrophilextracellulartrapsrolerelateddiseasesmicrobiotaRecentalsoshort-chainfattyacidschronicmultifactorialdiseasecharacterizedpersistentlow-gradesystemicFataccumulationadiposeleadsstressdysfunctionaladipocytesalonginfiltrationinitiatessustainsfirstinfiltratehigh-fatdietHFD-inducedEmergingevidencesuggestsreleaseplaysignificantprogressionAdditionallyassociatedimbalanceincreasedintestinalbarrierpermeabilityresultingtranslocationlivebacteriabacterialdeoxyribonucleicacidDNAlipopolysaccharidesLPSpro-inflammatorycytokinesbloodstreamtherebycontributingmetabolicresearchshownSCFAsproducedcaninfluencevariousfunctionsincludingactivationmigrationgenerationinflammatorymediatorsreviewcomprehensivelysummarizesrecentadvancementsunderstandingNETpathophysiologydisordersfocusingupdatedpotentialtherapeuticapproachestargetingbasedstudiesconductedhumansanimalmodelsEvolvingRoleNeutrophilExtracellularTrapsRelatedDiseases:InsightsAdvancesNETosisdysbiosismicrobiomeobesity-related

Similar Articles

Cited By