Active Components of 16 Essential Oils and Their Fumigation Effects on (Lepidoptera: Pyralidae).

Xiao-Ling Su, Zhi-Chu Huang, Lin Chen, Dao-Yin Chen, Dong-Xu Zhao, Zhi-Jiang Zeng
Author Information
  1. Xiao-Ling Su: Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China.
  2. Zhi-Chu Huang: Jinhua Academy of Agricultural Sciences, Jinhua 321017, China.
  3. Lin Chen: Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China.
  4. Dao-Yin Chen: Jinhua Academy of Agricultural Sciences, Jinhua 321017, China.
  5. Dong-Xu Zhao: Jinhua Academy of Agricultural Sciences, Jinhua 321017, China.
  6. Zhi-Jiang Zeng: Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China. ORCID

Abstract

The greater wax moth (GWM, ) is a prevalent pest of the honeybee and a significant risk to both honeybee populations and honeycomb storage. Research on the toxicity of essential oils (EOs) to GWM larvae has provided promising results, although their ovicidal effects and active ingredients require further study. Identifying effective plant compounds is essential for developing insecticides for GWM control. This study assessed the fumigation efficacy of 16 EOs on GWM eggs and fifth instar larvae and determined the effectiveness of these EOs and their primary components for fumigating fifth larvae. Wintergreen, star anise, and clove oils demonstrated significant insecticidal effects on GWM eggs and fifth instar larvae, resulting in a mortality rate exceeding 80% within 48 h. Gas chromatography-mass spectrometry analysis identified methyl salicylate (93.26%), -anethole (87.75%), and eugenol (77.75%) as the primary compounds in wintergreen, star anise, and clove oils, respectively. Further toxicity testing confirmed that these compounds were responsible for the observed insecticidal properties of the EOs. Notably, -anethole exhibited the lowest LC value (25.22 μL/L) against the fifth instar larvae of GWM and significant toxicity against GWM eggs and fifth instar larvae, suggesting its potential as a viable option for the future control of GWM populations.

Keywords

References

  1. Plants (Basel). 2021 Oct 15;10(10): [PMID: 34686003]
  2. Vet Sci. 2023 Apr 23;10(5): [PMID: 37235392]
  3. Annu Rev Entomol. 2020 Jan 7;65:233-249 [PMID: 31594414]
  4. Trop Biomed. 2006 Dec;23(2):208-12 [PMID: 17322823]
  5. Gels. 2022 Sep 22;8(10): [PMID: 36286109]
  6. Postepy Dermatol Alergol. 2019 Jun;36(3):308-314 [PMID: 31333348]
  7. Parasitol Res. 2009 Oct;105(5):1365-70 [PMID: 19653003]
  8. Plants (Basel). 2022 Apr 25;11(9): [PMID: 35567160]
  9. Trends Ecol Evol. 2010 Jun;25(6):345-53 [PMID: 20188434]
  10. J Zhejiang Univ Sci B. 2019 Jul;20(7):563-575 [PMID: 31168970]
  11. Environ Sci Pollut Res Int. 2020 May;27(15):18708-18716 [PMID: 32207008]
  12. Molecules. 2010 Oct 27;15(11):7558-69 [PMID: 21030909]
  13. J Trop Med. 2024 Mar 29;2024:1051086 [PMID: 38586242]
  14. Food Addit Contam. 2006 Feb;23(2):159-63 [PMID: 16449058]
  15. Foods. 2022 Nov 04;11(21): [PMID: 36360130]
  16. Plants (Basel). 2022 Apr 17;11(8): [PMID: 35448818]
  17. Phytother Res. 2004 Jun;18(6):435-48 [PMID: 15287066]
  18. Proc Biol Sci. 2009 Mar 7;276(1658):903-9 [PMID: 19019785]
  19. Sci Rep. 2021 Jul 5;11(1):13853 [PMID: 34226604]
  20. Parasitol Res. 2016 Feb;115(2):807-15 [PMID: 26518773]
  21. Insects. 2017 Jun 09;8(2): [PMID: 28598383]
  22. J Biosci Bioeng. 2004;98(6):490-2 [PMID: 16233742]
  23. Braz J Biol. 2023 Jan 06;83:e269245 [PMID: 36629625]
  24. J Agric Food Chem. 2012 Jul 25;60(29):7194-203 [PMID: 22746406]
  25. J Invertebr Pathol. 2010 Jan;103 Suppl 1:S96-119 [PMID: 19909970]
  26. Chem Biodivers. 2015 Jul;12(7):1105-14 [PMID: 26172330]
  27. Sci Rep. 2024 Aug 23;14(1):19660 [PMID: 39191818]
  28. Pest Manag Sci. 2016 Mar;72(3):474-80 [PMID: 25809531]
  29. Rev Sci Tech. 1997 Apr;16(1):172-6 [PMID: 9329115]
  30. Ecotoxicol Environ Saf. 2018 Feb;148:781-786 [PMID: 29190597]
  31. Rev Bras Parasitol Vet. 2021 Dec 10;30(4):e009321 [PMID: 34910016]
  32. Int J Parasitol Parasites Wildl. 2022 Mar 04;17:319-326 [PMID: 35342713]
  33. Insects. 2022 Sep 06;13(9): [PMID: 36135514]
  34. Acta Parasitol. 2024 Mar;69(1):260-266 [PMID: 37999874]
  35. Bioresour Technol. 2008 May;99(8):3251-5 [PMID: 17662602]
  36. Gigascience. 2022 Jul 19;11: [PMID: 35852419]

Grants

  1. CARS-44/Modern Agriculture Industry Technology System
  2. 2022-2-020/Jinhua City Science and Technology Plan Project
  3. 2023SJLM25/Municipal Academy of Agricultural Sciences Alliance Regional Demonstration Project

Word Cloud

Created with Highcharts 10.0.0GWMlarvaefifthinstartoxicityEOseggssignificantessentialoilscompoundswaxmothhoneybeepopulationseffectsstudycontrolfumigation16primarystaranisecloveinsecticidal-anethole75%greaterprevalentpestriskhoneycombstorageResearchprovidedpromisingresultsalthoughovicidalactiveingredientsrequireIdentifyingeffectiveplantdevelopinginsecticidesassessedefficacydeterminedeffectivenesscomponentsfumigatingWintergreendemonstratedresultingmortalityrateexceeding80%within48hGaschromatography-massspectrometryanalysisidentifiedmethylsalicylate9326%87eugenol77wintergreenrespectivelytestingconfirmedresponsibleobservedpropertiesNotablyexhibitedlowestLCvalue2522μL/LsuggestingpotentialviableoptionfutureActiveComponentsEssentialOilsFumigationEffectsLepidoptera:PyralidaeGalleriamellonellaoil

Similar Articles

Cited By