Comparative Genome Analysis of Piscine : Virulence-Associated Metabolic Pathways.

Thararat Phurahong, Patcharee Soonson, Jumroensri Thawonsuwan, Varin Tanasomwang, Nontawith Areechon, Teerasak E-Kobon, Sasimanas Unajak
Author Information
  1. Thararat Phurahong: Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand. ORCID
  2. Patcharee Soonson: Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand.
  3. Jumroensri Thawonsuwan: Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand.
  4. Varin Tanasomwang: Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand.
  5. Nontawith Areechon: Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand.
  6. Teerasak E-Kobon: Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand.
  7. Sasimanas Unajak: Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand. ORCID

Abstract

Vibriosis caused by is a major problem in aquatic animals, particularly brown marble groupers (). biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence. To gain insight into the different genetic features revealed by the potential virulence mechanisms of in relation to a spectrum of pathogenesis, comparative genomic analyses of three biotype I strains belonging to different subgroups (SUKU_G1, SUKU_G2, and SUKU_G3) were performed. The genome is composed of two circular chromosomes with average sizes of 3 Mbp and 1.7 Mbp that are evolutionarily related based on the analysis of orthologous genes. A comparative genome analysis of revealed 5200 coding sequences, of which 3887 represented the core genome and the remaining 1313 constituted the dispensable genome. The most virulent isolate (SUKU_G1) carries unique enzymes that are important for lipopolysaccharide (LPS) and capsular polysaccharide (CPS) synthesis, as well as flagellar glycosylation, and harbors another type of repeat in toxin (RTX) and bacterial defense mechanisms. The less virulent isolate (SUKU_G2) shares enzymes related to CPS biosynthesis or flagellar glycosylation, while the avirulent isolate (SUKU_G3) and a less virulent isolate (SUKU_G2) share enzymes related to the production of rare sugars. Interestingly, the isolates from the three subgroups containing specific CMP-N-acetylneuraminate-producing enzymes that are correlated with their growth abilities. Collectively, these observations provide an understanding of the molecular mechanisms underlying disease pathogenesis and support the development of strategies for bacterial disease prevention and control.

Keywords

References

  1. Source Code Biol Med. 2011 Jun 21;6:11 [PMID: 21693004]
  2. Commun Biol. 2018 Oct 31;1:180 [PMID: 30393777]
  3. Nucleic Acids Res. 2020 Jan 8;48(D1):D517-D525 [PMID: 31665441]
  4. Genome Res. 2003 Dec;13(12):2577-87 [PMID: 14656965]
  5. BMC Microbiol. 2016 Nov 4;16(1):258 [PMID: 27814687]
  6. Infect Immun. 2003 Oct;71(10):5461-71 [PMID: 14500463]
  7. Indian J Microbiol. 2017 Mar;57(1):1-10 [PMID: 28148975]
  8. J Bacteriol. 1989 Jan;171(1):8-15 [PMID: 2644215]
  9. Infect Immun. 2002 Aug;70(8):3985-93 [PMID: 12117903]
  10. Foodborne Pathog Dis. 2015 Jan;12(1):68-73 [PMID: 25455966]
  11. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  12. Nature. 1991 Mar 7;350(6313):87-90 [PMID: 2002850]
  13. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  14. Mol Microbiol. 2015 Feb;95(4):590-604 [PMID: 25427654]
  15. Annu Rev Microbiol. 2023 Sep 15;77:561-581 [PMID: 37406345]
  16. Microbios. 1991;67(272-273):141-9 [PMID: 1779875]
  17. Microbiology (Reading). 1999 Dec;145 ( Pt 12):3505-3521 [PMID: 10627048]
  18. Microbiol Immunol. 2005;49(6):513-9 [PMID: 15965298]
  19. Bioinformatics. 2008 Dec 1;24(23):2672-6 [PMID: 18845581]
  20. Eur J Biochem. 1969 Mar;8(1):139-45 [PMID: 4889170]
  21. Sci Rep. 2015 Feb 10;5:8365 [PMID: 25666585]
  22. Infect Immun. 2009 May;77(5):1723-33 [PMID: 19255188]
  23. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7173-8 [PMID: 19342493]
  24. Annu Rev Microbiol. 2010;64:163-84 [PMID: 20825345]
  25. Clin Microbiol Rev. 2007 Jan;20(1):79-114 [PMID: 17223624]
  26. J Bacteriol. 2005 Jan;187(2):752-7 [PMID: 15629946]
  27. Vet Microbiol. 2022 Oct;273:109532 [PMID: 35987183]
  28. Toxicon. 1983;21(5):717-27 [PMID: 6359585]
  29. J Infect Dis. 1993 Sep;168(3):758-62 [PMID: 8354917]
  30. EcoSal Plus. 2019 Feb;8(2): [PMID: 30767847]
  31. Nature. 1999 Nov 25;402(6760):434-9 [PMID: 10586886]
  32. Nat Rev Microbiol. 2012 Apr 02;10(5):336-51 [PMID: 22466878]
  33. Avian Dis. 2019 Dec;63(4):693-702 [PMID: 31865685]
  34. J Biol Chem. 2001 Sep 14;276(37):34862-70 [PMID: 11461915]
  35. Nat Microbiol. 2019 Mar;4(3):504-514 [PMID: 30742072]
  36. Infect Immun. 2011 Oct;79(10):4068-80 [PMID: 21788383]
  37. Sci Rep. 2016 Apr 13;6:24373 [PMID: 27071527]
  38. Nucleic Acids Res. 2019 Jul 2;47(W1):W52-W58 [PMID: 31053848]
  39. Infect Immun. 1993 May;61(5):2053-8 [PMID: 8478094]
  40. Curr Opin Microbiol. 2003 Aug;6(4):417-24 [PMID: 12941415]
  41. Curr Opin Microbiol. 2005 Apr;8(2):174-81 [PMID: 15802249]
  42. Mol Microbiol. 2003 Jun;48(6):1579-92 [PMID: 12791140]
  43. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  44. BMC Genomics. 2011 Aug 08;12:402 [PMID: 21824423]
  45. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  46. Immunobiology. 1993 Apr;187(3-5):382-402 [PMID: 8330904]
  47. Nat Struct Biol. 2001 Jun;8(6):492-8 [PMID: 11373615]
  48. Microbiol Spectr. 2019 Jul;7(4): [PMID: 31298206]
  49. Infect Immun. 1998 Oct;66(10):4851-5 [PMID: 9746589]
  50. Microb Pathog. 1990 May;8(5):353-62 [PMID: 1699109]
  51. mSystems. 2021 Aug 31;6(4):e0057121 [PMID: 34227831]
  52. Curr Opin Immunol. 2015 Feb;32:36-41 [PMID: 25574773]
  53. J Biol Chem. 2005 May 20;280(20):19535-42 [PMID: 15778500]
  54. Trends Microbiol. 2001 Mar;9(3):137-44 [PMID: 11303502]
  55. J Infect Dis. 1984 Apr;149(4):558-61 [PMID: 6725989]
  56. FEMS Microbiol Rev. 2010 Nov;34(6):1076-112 [PMID: 20528947]
  57. Microb Genom. 2022 May;8(5): [PMID: 35584003]
  58. J Mol Biol. 2016 Feb 22;428(4):726-731 [PMID: 26585406]
  59. Res Microbiol. 2012 Nov-Dec;163(9-10):607-18 [PMID: 23123555]
  60. Methods Mol Biol. 2009;532:435-53 [PMID: 19271200]
  61. Nat Microbiol. 2019 May;4(5):781-788 [PMID: 30778145]
  62. Front Microbiol. 2017 Nov 07;8:2177 [PMID: 29163452]
  63. Infect Immun. 2014 May;82(5):2016-26 [PMID: 24595137]
  64. Curr Opin Microbiol. 2006 Oct;9(5):532-6 [PMID: 16890009]
  65. Bioinformatics. 2016 Mar 15;32(6):929-31 [PMID: 26576653]
  66. Life Sci. 1996;59(3):PL41-7 [PMID: 8699927]
  67. Nat Rev Microbiol. 2008 May;6(5):334-5 [PMID: 19663048]
  68. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 [PMID: 19855009]
  69. FEMS Microbiol Ecol. 2009 Jul;69(1):16-26 [PMID: 19453744]
  70. Biochem Biophys Res Commun. 2010 Sep 3;399(4):607-12 [PMID: 20682286]
  71. Genome Biol Evol. 2020 May 1;12(5):535-552 [PMID: 32196086]
  72. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  73. J Bacteriol. 2011 Apr;193(8):2062-3 [PMID: 21317338]
  74. J Biol Chem. 2009 May 1;284(18):11854-62 [PMID: 19282284]
  75. Nucleic Acids Res. 2019 Jan 8;47(D1):D687-D692 [PMID: 30395255]
  76. Toxins (Basel). 2018 Dec 02;10(12): [PMID: 30513802]
  77. Carbohydr Res. 1984 Oct 15;133(2):C5-8 [PMID: 6437679]
  78. Genome Announc. 2014 Oct 02;2(5): [PMID: 25278541]
  79. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  80. Eur J Biochem. 1973 Sep 3;37(3):401-5 [PMID: 4204717]
  81. J Biol Chem. 2003 Dec 19;278(51):51347-59 [PMID: 14551189]
  82. Gut Pathog. 2016 Jun 20;8:22 [PMID: 27325916]

Grants

  1. PRP 5805011210/Agricultural Research Development Agency (ARDA)
  2. N42A650276/National Research Council of Thailand (NRCT) and Kasetsart University

Word Cloud

Created with Highcharts 10.0.0differentvirulencegenomesubgroupsSUKU_G2pathogenesisisolateenzymesbiotypeSUKU_G1SUKU_G3genesthreemechanismscomparativerelatedvirulentclassifiedaccordingtypesstrainsgrowthrevealedMbpanalysisCPSflagellarglycosylationbacteriallessdiseaseVibriosiscausedmajorproblemaquaticanimalsparticularlybrownmarblegroupersrecentlyisolatedpreviousstudyshownexhibitedphenotypestermsrategaininsightgeneticfeaturespotentialrelationspectrumgenomicanalysesbelongingperformedcomposedtwocircularchromosomesaveragesizes317evolutionarilybasedorthologous5200codingsequences3887representedcoreremaining1313constituteddispensablecarriesuniqueimportantlipopolysaccharideLPScapsularpolysaccharidesynthesiswellharborsanothertyperepeattoxinRTXdefensesharesbiosynthesisavirulentshareproductionraresugarsInterestinglyisolatescontainingspecificCMP-N-acetylneuraminate-producingcorrelatedabilitiesCollectivelyobservationsprovideunderstandingmolecularunderlyingsupportdevelopmentstrategiespreventioncontrolComparativeGenomeAnalysisPiscine:Virulence-AssociatedMetabolicPathwaysVibriovulnificusmetabolicpathwayfactorsassociated

Similar Articles

Cited By