Quantification of Viable by Propidium Monoazide Real-Time PCR After Long-Term Storage of Peanut Products.

Aline M von Hertwig, Andr�� A Pereira, Dionisio Pedro Amorim Neto, Maristela S Nascimento
Author Information
  1. Aline M von Hertwig: Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil. ORCID
  2. Andr�� A Pereira: Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil.
  3. Dionisio Pedro Amorim Neto: Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil. ORCID
  4. Maristela S Nascimento: Faculty of Food Engineering, University of Campinas, Campinas 13083-862, Brazil.

Abstract

In this study, the performance of quantitative PCR, combined or not with propidium monoazide (PMA), to recover from peanut products after different storage times was evaluated. The samples were inoculated with 5-6 log cfu g of Typhimurium ATCC 14028 and stored at 28 ��C for up to 540 d. The correlation between the threshold cycle number (Ct) and the colony-forming units (cfu) was obtained by a standard curve, which showed a linear correlation (R = 0.97). The highest counts were recovered by qPCR ( < 0.05); however, it quantified both viable and non-viable cells. For roasted peanuts, a significant difference ( < 0.05) between qPCR-PMA and the culture method was verified only for samples stored for 30 d, i.e., 2.8 versus 4.0 log cfu g. Further, there was no VBNC status in the roasted peanuts, even after long-term exposure to desiccation stress. For peanut-based products, after 540 d, only showed a significant difference ( < 0.05) among the three methods evaluated. In peanut brittle, qPCR-PMA detected 1.5 log cfu g, while, in the culture method, was recovered in 1 g. The pathogen was below the detection limit in either by plate count or qPCR-PMA. Therefore, qPCR-PMA shows potential for use in quantifying in peanut products.

Keywords

References

  1. Foodborne Pathog Dis. 2020 Feb;17(2):87-97 [PMID: 31532231]
  2. Food Microbiol. 2012 May;30(1):311-5 [PMID: 22265317]
  3. J Microbiol Methods. 2014 Aug;103:131-7 [PMID: 24927988]
  4. Appl Environ Microbiol. 2002 Feb;68(2):799-806 [PMID: 11823221]
  5. J Microbiol Methods. 2012 Sep;90(3):262-6 [PMID: 22677606]
  6. J Food Prot. 2010 Oct;73(10):1919-36 [PMID: 21067682]
  7. J Appl Microbiol. 2002;92(4):633-40 [PMID: 11966903]
  8. J Microbiol Methods. 2005 Mar;60(3):315-23 [PMID: 15649533]
  9. J Food Prot. 2010 Nov;73(11):1986-92 [PMID: 21219709]
  10. J Clin Microbiol. 1990 Dec;28(12):2597-601 [PMID: 2279988]
  11. Food Sci Nutr. 2022 May 17;10(9):3165-3174 [PMID: 36171769]
  12. Lett Appl Microbiol. 2018 Jul;67(1):79-88 [PMID: 29665023]
  13. PLoS One. 2018 Feb 5;13(2):e0192457 [PMID: 29401480]
  14. J Microbiol Methods. 2011 May;85(2):124-30 [PMID: 21329735]
  15. Front Microbiol. 2013 Nov 14;4:331 [PMID: 24294212]
  16. Sci Total Environ. 2010 Feb 15;408(6):1256-63 [PMID: 20035972]
  17. Biomol Detect Quantif. 2015 Mar 11;3:9-16 [PMID: 27077029]
  18. Int J Food Microbiol. 2014 Jan 17;170:48-54 [PMID: 24291180]
  19. Appl Environ Microbiol. 2007 Dec;73(24):8028-31 [PMID: 17933922]
  20. Food Microbiol. 2015 Jun;48:182-90 [PMID: 25791007]
  21. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  22. J Food Prot. 2009 May;72(5):1121-38 [PMID: 19517746]
  23. J Microbiol Methods. 2007 Aug;70(2):252-60 [PMID: 17544161]
  24. Appl Environ Microbiol. 2010 Aug;76(15):5097-104 [PMID: 20562292]
  25. Food Res Int. 2019 May;119:530-540 [PMID: 30884686]
  26. Appl Environ Microbiol. 2009 Jun;75(11):3714-20 [PMID: 19376910]
  27. Lett Appl Microbiol. 2005;40(4):301-6 [PMID: 15752222]
  28. Mol Cell Probes. 1992 Aug;6(4):271-9 [PMID: 1528198]
  29. Food Microbiol. 2013 Aug;35(1):49-57 [PMID: 23628614]
  30. Curr Microbiol. 2010 Dec;61(6):515-9 [PMID: 20419373]
  31. Appl Environ Microbiol. 2012 Nov;78(22):7866-75 [PMID: 22941081]
  32. Braz J Microbiol. 2020 Mar;51(1):335-345 [PMID: 31782062]
  33. Appl Environ Microbiol. 2003 Nov;69(11):6669-75 [PMID: 14602627]
  34. Epidemiol Infect. 1995 Dec;115(3):501-11 [PMID: 8557082]
  35. Lett Appl Microbiol. 2023 Oct 4;76(10): [PMID: 37793793]
  36. MMWR Morb Mortal Wkly Rep. 2009 Feb 6;58(4):85-90 [PMID: 19194370]
  37. Pathogens. 2022 Mar 16;11(3): [PMID: 35335682]
  38. BMC Infect Dis. 2005 Feb 03;5:7 [PMID: 15691371]

Grants

  1. 2016/18724-3 2016/24426-5/Funda����o de Amparo �� Pesquisa do Estado de S��o Paulo
  2. 001/Coordena����o de Aperfeicoamento de Pessoal de N��vel Superior

Word Cloud

Created with Highcharts 10.0.00cfugqPCR-PMApeanutproductslogd<05peanutsPCRpropidiummonoazidePMAevaluatedsamplesstored540correlationshowedrecoveredviablecellsroastedsignificantdifferenceculturemethodVBNC1studyperformancequantitativecombinedrecoverdifferentstoragetimesinoculated5-6TyphimuriumATCC1402828��CthresholdcyclenumberCtcolony-formingunitsobtainedstandardcurvelinearR=97highestcountsqPCRhoweverquantifiednon-viableverified30ie28versus4statusevenlong-termexposuredesiccationstresspeanut-basedamongthreemethodsbrittledetected5pathogendetectionlimiteitherplatecountThereforeshowspotentialusequantifyingQuantificationViablePropidiumMonoazideReal-TimeLong-TermStoragePeanutProductsSalmonellalow-moisturefoodnon-culturable

Similar Articles

Cited By

No available data.