A Systematic Review on the Advancements in Remote Sensing and Proximity Tools for Grapevine Disease Detection.

Fernando Portela, Joaquim J Sousa, Cl��udio Ara��jo-Paredes, Emanuel Peres, Raul Morais, Lu��s P��dua
Author Information
  1. Fernando Portela: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Tr��s-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  2. Joaquim J Sousa: School of Science and Technology, University of Tr��s-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  3. Cl��udio Ara��jo-Paredes: proMetheus-Research Unit in Materials, Energy and Environment for Sustainability, Escola Superior Agr��ria, Instituto Polit��cnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal. ORCID
  4. Emanuel Peres: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Tr��s-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  5. Raul Morais: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Tr��s-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  6. Lu��s P��dua: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Tr��s-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. ORCID

Abstract

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases. The review covers 104 studies published between 2008 and October 2024, identified through searches in Scopus and Web of Science, conducted on 25 January 2024, and updated on 10 October 2024. The included studies focused exclusively on the sensor-based detection of grapevine diseases, while excluded studies were not related to grapevine diseases, did not use remote or proximal sensing, or were not conducted in field conditions. The most studied diseases include downy mildew, powdery mildew, , esca complex, rots, and viral diseases. The main sensors identified for disease detection are RGB, multispectral, hyperspectral sensors, and field spectroscopy. A trend identified in recent published research is the integration of artificial intelligence techniques, such as machine learning and deep learning, to improve disease detection accuracy. The results demonstrate progress in sensor-based disease monitoring, with most studies concentrating on specific diseases, sensor platforms, or methodological improvements. Future research should focus on standardizing methodologies, integrating multi-sensor data, and validating approaches across diverse vineyard contexts to improve commercial applicability and sustainability, addressing both economic and environmental challenges.

Keywords

References

  1. J Fungi (Basel). 2021 Sep 17;7(9): [PMID: 34575808]
  2. J Clean Prod. 2020 Nov 20;274:122877 [PMID: 32834567]
  3. Pest Manag Sci. 2024 Feb;80(2):245-261 [PMID: 37599270]
  4. Environ Pollut. 2000 Jun;108(3):317-26 [PMID: 15092926]
  5. Sensors (Basel). 2022 Oct 21;22(20): [PMID: 36298406]
  6. Sensors (Basel). 2017 Nov 29;17(12): [PMID: 29186057]
  7. BMJ. 2021 Mar 29;372:n160 [PMID: 33781993]
  8. Plants (Basel). 2022 Jul 08;11(14): [PMID: 35890441]
  9. Arab J Sci Eng. 2022;47(7):7963-7984 [PMID: 35492958]
  10. Sci Total Environ. 2020 Aug 25;732:139204 [PMID: 32438190]
  11. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6907-12 [PMID: 23569231]
  12. Sensors (Basel). 2022 May 08;22(9): [PMID: 35591275]
  13. Sensors (Basel). 2011;11(6):6165-96 [PMID: 22163948]
  14. Microorganisms. 2022 Dec 27;11(1): [PMID: 36677365]
  15. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  16. Front Plant Sci. 2022 Sep 09;13:978761 [PMID: 36161031]
  17. Int J Biometeorol. 2020 Sep;64(9):1571-1582 [PMID: 32436136]
  18. Plants (Basel). 2024 Apr 30;13(9): [PMID: 38732477]
  19. Sensors (Basel). 2022 May 16;22(10): [PMID: 35632195]
  20. Data Brief. 2023 Jan 02;46:108876 [PMID: 36660442]
  21. Arch Virol. 2011 Sep;156(9):1495-503 [PMID: 21779907]
  22. Bioengineering (Basel). 2023 Aug 29;10(9): [PMID: 37760123]
  23. Sensors (Basel). 2023 Mar 06;23(5): [PMID: 36905055]
  24. Funct Plant Biol. 2008 Jun;35(4):281-288 [PMID: 32688783]
  25. Methods Mol Biol. 2019;1875:213-238 [PMID: 30362007]
  26. Plants (Basel). 2024 Jan 03;13(1): [PMID: 38202443]
  27. Sensors (Basel). 2022 Aug 31;22(17): [PMID: 36081033]
  28. Photochem Photobiol Sci. 2015 Oct;14(10):1807-13 [PMID: 26293623]
  29. Mol Plant Pathol. 2012 Jan;13(1):1-16 [PMID: 21726395]
  30. Plant Dis. 2018 Jul;102(7):1189-1217 [PMID: 30673583]
  31. Hortic Res. 2024 Jul 10;11(9):uhae182 [PMID: 39247883]
  32. Sensors (Basel). 2020 Dec 29;21(1): [PMID: 33383831]
  33. Sensors (Basel). 2021 Jan 22;21(3): [PMID: 33499335]
  34. Heliyon. 2024 Jul 08;10(14):e34017 [PMID: 39108914]
  35. Glob Chang Biol. 2016 Nov;22(11):3814-3828 [PMID: 27370903]
  36. Sci Rep. 2024 Nov 30;14(1):29793 [PMID: 39616219]
  37. Int J Epidemiol. 2005 Oct;34(5):1089-99 [PMID: 16087687]
  38. Data Brief. 2024 May 03;54:110497 [PMID: 38774243]
  39. Phytopathology. 2024 Dec;114(12):2536-2545 [PMID: 39244675]
  40. Phytopathology. 2024 Feb;114(2):464-473 [PMID: 37565813]
  41. Front Microbiol. 2021 Jan 11;11:599150 [PMID: 33505371]
  42. Front Microbiol. 2021 Apr 13;12:673810 [PMID: 33927711]
  43. Front Plant Sci. 2022 Jun 01;13:729097 [PMID: 35720600]
  44. Arch Virol. 2016 May;161(5):1401-3 [PMID: 26873812]
  45. Front Microbiol. 2013 Apr 16;4:82 [PMID: 23596440]
  46. Phytopathology. 2023 Aug;113(8):1439-1446 [PMID: 37097472]
  47. Biosensors (Basel). 2015 Aug 06;5(3):537-61 [PMID: 26287253]
  48. Sensors (Basel). 2021 Feb 01;21(3): [PMID: 33535445]
  49. Sensors (Basel). 2020 Aug 05;20(16): [PMID: 32764472]
  50. Plant Methods. 2020 Oct 21;16:142 [PMID: 33101451]
  51. Data Brief. 2021 Jun 29;37:107250 [PMID: 34258341]

Grants

  1. LA/P/0126/2020/Funda����o para a Ci��ncia e Tecnologia
  2. UIDB/05937/2020/Funda����o para a Ci��ncia e Tecnologia
  3. UIDP/05975/2020/Funda����o para a Ci��ncia e Tecnologia
  4. C644866286-00000011/RRP - Recovery and Resilience Plan and the European NextGeneration EU Funds
  5. UIDB/04033/2020/Funda����o para a Ci��ncia e Tecnologia

MeSH Term

Vitis
Plant Diseases
Remote Sensing Technology
Biosensing Techniques

Word Cloud

Created with Highcharts 10.0.0diseasesdiseasedetectionstudiessensingproximalsensor-basedfieldgrapevine2024identifiedmildeweconomicreviewremotevineyardaddressingmonitoringpublishedOctoberconducteddownypowderyescacomplexviralsensorsmultispectralhyperspectralresearchartificialintelligencelearningimproveGrapevinesLoneeconomicallyrelevantcropsworldwideyethighlyvulnerablevariouscausingsubstantiallosseswinegrowerssystematicevaluatesapplicationtoolscurrentcapabilitiesgapsfuturedirectionscovers1042008searchesScopusWebScience25Januaryupdated10includedfocusedexclusivelyexcludedrelateduseconditionsstudiedincluderotsmainRGBspectroscopytrendrecentintegrationtechniquesmachinedeepaccuracyresultsdemonstrateprogressconcentratingspecificsensorplatformsmethodologicalimprovementsFuturefocusstandardizingmethodologiesintegratingmulti-sensordatavalidatingapproachesacrossdiversecontextscommercialapplicabilitysustainabilityenvironmentalchallengesSystematicReviewAdvancementsRemoteSensingProximityToolsGrapevineDiseaseDetectionFlavescencedor��eprecisionviticulturethermalinfrared

Similar Articles

Cited By

No available data.