Rapid Development of Modified Vaccinia Virus Ankara (MVA)-Based Vaccine Candidates Against Marburg Virus Suitable for Clinical Use in Humans.

Alina Tscherne, Georgia Kalodimou, Alexandra Kupke, Cornelius Rohde, Astrid Freudenstein, Sylvia Jany, Satendra Kumar, Gerd Sutter, Verena Kr��hling, Stephan Becker, Asisa Volz
Author Information
  1. Alina Tscherne: Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschlei��heim, Germany. ORCID
  2. Georgia Kalodimou: Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschlei��heim, Germany. ORCID
  3. Alexandra Kupke: Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany. ORCID
  4. Cornelius Rohde: Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany. ORCID
  5. Astrid Freudenstein: Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschlei��heim, Germany.
  6. Sylvia Jany: Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschlei��heim, Germany.
  7. Satendra Kumar: Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschlei��heim, Germany. ORCID
  8. Gerd Sutter: Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschlei��heim, Germany. ORCID
  9. Verena Kr��hling: Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany. ORCID
  10. Stephan Becker: Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany. ORCID
  11. Asisa Volz: Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany. ORCID

Abstract

BACKGROUND/OBJECTIVES: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics. Although MARV-specific vaccines are evaluated in preclinical and clinical research, none have been approved for human use. Modified Vaccinia virus Ankara (MVA), a well-established viral vector used to generate vaccines against emerging pathogens, can deliver multiple antigens and has a remarkable clinical safety and immunogenicity record, further supporting its evaluation as a vaccine against MARV. The rapid availability of safe and effective MVA-MARV vaccine candidates would expand the possibilities of multi-factored intervention strategies in endemic countries.
METHODS: We have used an optimized methodology to rapidly generate and characterize recombinant MVA candidate vaccines that meet the quality requirements to proceed to human clinical trials. As a proof-of-concept for the optimized methodology, we generated two recombinant MVAs that deliver either the MARV glycoprotein (MVA-MARV-GP) or the MARV nucleoprotein (MVA-MARV-NP).
RESULTS: Infections of human cell cultures with recombinant MVA-MARV-GP and MVA-MARV-NP confirmed the efficient synthesis of MARV-GP and MARV-NP proteins in mammalian cells, which are non-permissive for MVA replication. Prime-boost immunizations in C57BL/6J mice readily induced circulating serum antibodies binding to recombinant MARV-GP and MARV-NP proteins. Moreover, the MVA-MARV-candidate vaccines elicited MARV-specific T-cell responses in C57BL/6J mice.
CONCLUSIONS: We confirmed the suitability of our two backbone viruses MVA-mCherry and MVA-GFP in a proof-of-concept study to rapidly generate candidate vaccines against MARV. However, further studies are warranted to characterize the protective efficacy of these recombinant MVA-MARV vaccines in other preclinical models and to evaluate them as vaccine candidates in humans.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2202069119 [PMID: 35679343]
  2. Sci Transl Med. 2021 Jul 14;13(602): [PMID: 34261800]
  3. J Mol Biol. 2023 Aug 1;435(15):168173 [PMID: 37301278]
  4. J Virol. 2009 Jul;83(14):7176-84 [PMID: 19420086]
  5. Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2313789121 [PMID: 38335257]
  6. Vaccine. 2007 Mar 1;25(11):1923-34 [PMID: 17241710]
  7. Hum Immunol. 2002 Sep;63(9):701-9 [PMID: 12175724]
  8. Annu Rev Biomed Eng. 2022 Jun 6;24:85-109 [PMID: 35231177]
  9. Microbiol Mol Biol Rev. 2020 May 13;84(2): [PMID: 32404328]
  10. Ann N Y Acad Sci. 1970 Oct 30;174(2):932-45 [PMID: 4993535]
  11. PLoS One. 2016 Feb 10;11(2):e0147812 [PMID: 26863315]
  12. Vaccine. 2016 Apr 7;34(16):1915-26 [PMID: 26939903]
  13. J Virol. 2002 Dec;76(24):12463-72 [PMID: 12438572]
  14. Front Immunol. 2022 Mar 16;13:845887 [PMID: 35371043]
  15. Clin Vaccine Immunol. 2016 Aug 05;23(8):717-24 [PMID: 27335383]
  16. Virulence. 2022 Dec;13(1):609-633 [PMID: 35363588]
  17. J Exp Med. 2017 Sep 4;214(9):2563-2572 [PMID: 28724616]
  18. Front Immunol. 2022 Jan 27;12:824728 [PMID: 35154086]
  19. NPJ Vaccines. 2024 Mar 29;9(1):67 [PMID: 38553525]
  20. Virus Res. 2013 Sep;176(1-2):83-90 [PMID: 23702199]
  21. Microorganisms. 2013 Nov 01;1(1):100-121 [PMID: 27694766]
  22. Curr Protoc Protein Sci. 2017 Aug 1;89:5.13.1-5.13.18 [PMID: 28762491]
  23. Biotechniques. 2002 Jul;33(1):186-8 [PMID: 12139244]
  24. Proc Natl Acad Sci U S A. 2021 Jul 13;118(28): [PMID: 34162739]
  25. NPJ Vaccines. 2024 Oct 11;9(1):186 [PMID: 39394249]
  26. PLoS One. 2017 Aug 24;12(8):e0182553 [PMID: 28837572]
  27. Curr Opin Microbiol. 2011 Aug;14(4):504-10 [PMID: 21824806]
  28. Vaccines (Basel). 2022 Sep 13;10(9): [PMID: 36146594]
  29. Ther Adv Infect Dis. 2023 Apr 20;10:20499361231168520 [PMID: 37101696]
  30. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10847-51 [PMID: 1438287]
  31. Semin Immunol. 2020 Aug;50:101430 [PMID: 33262065]
  32. J Virol Methods. 2009 Mar;156(1-2):37-43 [PMID: 19038289]
  33. J Gen Virol. 2001 Dec;82(Pt 12):2839-2848 [PMID: 11714958]
  34. PLoS One. 2022 Oct 5;17(10):e0274906 [PMID: 36197845]
  35. Sci Transl Med. 2022 Dec 14;14(675):eabq6364 [PMID: 36516269]
  36. Biologicals. 1995 Jun;23(2):159-64 [PMID: 7546658]
  37. Nanomedicine. 2022 Feb;40:102479 [PMID: 34743020]
  38. Nucleic Acids Res. 2020 Jul 2;48(W1):W449-W454 [PMID: 32406916]
  39. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7 [PMID: 9576958]
  40. Front Immunol. 2023 Dec 12;14:1264323 [PMID: 38155964]
  41. Cell. 2015 Feb 26;160(5):904-912 [PMID: 25723165]
  42. J Hepatol. 2023 Apr;78(4):717-730 [PMID: 36634821]
  43. Methods Mol Biol. 2012;890:93-111 [PMID: 22688762]
  44. Viruses. 2022 Mar 04;14(3): [PMID: 35336935]
  45. Nat Rev Microbiol. 2019 May;17(5):261-263 [PMID: 30926957]
  46. J Virol. 1984 Mar;49(3):857-64 [PMID: 6321770]
  47. Biotechniques. 1995 Sep;19(3):352-4, 356 [PMID: 7495543]
  48. Front Microbiol. 2016 Oct 03;7:1570 [PMID: 27752254]
  49. NPJ Vaccines. 2020 Sep 2;5(1):78 [PMID: 32922962]
  50. J Virol Methods. 2010 Feb;163(2):195-204 [PMID: 19778556]
  51. Vaccine. 2018 Nov 12;36(46):7003-7010 [PMID: 30309744]
  52. Vaccines (Basel). 2022 Mar 29;10(4): [PMID: 35455282]
  53. Vaccines (Basel). 2024 Feb 02;12(2): [PMID: 38400140]
  54. Virology. 2002 Mar 30;295(1):20-9 [PMID: 12033762]
  55. J Gen Virol. 2010 Feb;91(Pt 2):470-82 [PMID: 19846675]
  56. Proc Natl Acad Sci U S A. 2021 Mar 23;118(12): [PMID: 33688035]
  57. J Gen Virol. 1991 May;72 ( Pt 5):1031-8 [PMID: 2033387]
  58. J Pharm Pract. 2022 Dec;35(6):947-951 [PMID: 33840294]
  59. Lancet Infect Dis. 2020 Jul;20(7):827-838 [PMID: 32325037]
  60. J Virol Methods. 2018 Jan;251:7-14 [PMID: 28987424]
  61. Nat Rev Drug Discov. 2018 Apr;17(4):261-279 [PMID: 29326426]
  62. PLoS One. 2012;7(10):e48322 [PMID: 23118984]
  63. Mol Cell Biol. 1985 Dec;5(12):3403-9 [PMID: 3939316]
  64. Clin Epidemiol Glob Health. 2022 Jan-Feb;13:100920 [PMID: 34901523]
  65. Virology (Auckl). 2019 Jun 21;10:1178122X19849927 [PMID: 31258326]
  66. Arch Virol. 2023 Aug 3;168(8):220 [PMID: 37537381]
  67. Heliyon. 2023 Aug 29;9(9):e19613 [PMID: 37810116]
  68. Nat Rev Drug Discov. 2021 Nov;20(11):817-838 [PMID: 34433919]
  69. J Clin Invest. 2022 Dec 15;132(24): [PMID: 36301637]
  70. NPJ Vaccines. 2022 Jan 21;7(1):7 [PMID: 35064109]
  71. Vaccines (Basel). 2022 Nov 15;10(11): [PMID: 36423030]
  72. Front Immunol. 2023 Oct 18;14:1163159 [PMID: 37920464]
  73. Viruses. 2012 Oct 01;4(10):1878-927 [PMID: 23202446]
  74. Vaccine. 1996 Oct;14(15):1451-8 [PMID: 8994321]
  75. J Virol. 1988 Jun;62(6):1849-54 [PMID: 3130492]
  76. Front Immunol. 2023 Feb 02;14:1109486 [PMID: 36817425]
  77. Adv Virus Res. 2017;97:187-243 [PMID: 28057259]
  78. Virology. 2002 May 10;296(2):300-7 [PMID: 12069528]
  79. NPJ Vaccines. 2023 Mar 16;8(1):41 [PMID: 36928589]
  80. Vaccines (Basel). 2022 Aug 17;10(8): [PMID: 36016218]
  81. Virus Res. 1992 Jun;24(1):1-19 [PMID: 1626422]
  82. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3602-7 [PMID: 8622982]
  83. Vaccines (Basel). 2023 May 21;11(5): [PMID: 37243110]
  84. Nat Rev Drug Discov. 2018 Jun;17(6):413-434 [PMID: 29375139]
  85. Zentralbl Bakteriol B. 1978 Dec;167(5-6):375-90 [PMID: 219640]
  86. Cureus. 2023 Jul 17;15(7):e42014 [PMID: 37593293]
  87. Lancet Glob Health. 2023 Nov;11(11):e1743-e1752 [PMID: 37858585]
  88. Methods Mol Biol. 2012;890:59-92 [PMID: 22688761]
  89. Hum Vaccin Immunother. 2019;15(10):2359-2377 [PMID: 31589088]
  90. J Virol. 2007 Apr;81(8):3942-8 [PMID: 17267489]

Grants

  1. DZIF TTU 01.712/German Center for Infection Research

Word Cloud

Created with Highcharts 10.0.0MARVvaccinesMVAvaccinerecombinantMarburgvirushumanViruscountriesconfirmedclinicalModifiedVacciniaAnkarageneratehumansAfricayearsMARV-specificpreclinicalviralvectorusedemergingdeliverrapidMVA-MARVcandidatesoptimizedmethodologyrapidlycharacterizecandidateproof-of-concepttwoMVA-MARV-GPMVA-MARV-NPMARV-GPMARV-NPproteinsC57BL/6JmicevirusesBACKGROUND/OBJECTIVES:etiologicalagentDiseaseMVDrareseverehemorrhagicfeverdiseasehighcasefatalityratesSmalleroutbreaksfrequentlyreportedlastcasesoutsidefarexclusivelyimportedreturningtravelerspreviousalsospreadnon-endemicAfricandemonstratingpotentialcauseepidemicsAlthoughevaluatedresearchnoneapprovedusewell-establishedpathogenscanmultipleantigensremarkablesafetyimmunogenicityrecordsupportingevaluationavailabilitysafeeffectiveexpandpossibilitiesmulti-factoredinterventionstrategiesendemicMETHODS:meetqualityrequirementsproceedtrialsgeneratedMVAseitherglycoproteinnucleoproteinRESULTS:Infectionscellculturesefficientsynthesismammaliancellsnon-permissivereplicationPrime-boostimmunizationsreadilyinducedcirculatingserumantibodiesbindingMoreoverMVA-MARV-candidateelicitedT-cellresponsesCONCLUSIONS:suitabilitybackboneMVA-mCherryMVA-GFPstudyHoweverstudieswarrantedprotectiveefficacymodelsevaluateRapidDevelopment-BasedVaccineCandidatesSuitableClinicalUseHumansdevelopment

Similar Articles

Cited By