A Small-Particle Aerosol Model of Ebolavirus Zaire Infection in Ferrets.

Courtney A Cohen, Elizabeth E Zumbrun, James V Writer, Luke G Bonagofski, Charles J Shoemaker, Xiankun Zeng, Candace D Blancett, Christina E Douglas, Korey L Delp, Cheryl L Taylor-Howell, Brian D Carey, Suma Ravulapalli, Jo Lynne Raymond, John M Dye, Andrew S Herbert
Author Information
  1. Courtney A Cohen: Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA. ORCID
  2. Elizabeth E Zumbrun: Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  3. James V Writer: Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  4. Luke G Bonagofski: Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  5. Charles J Shoemaker: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  6. Xiankun Zeng: Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  7. Candace D Blancett: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  8. Christina E Douglas: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  9. Korey L Delp: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  10. Cheryl L Taylor-Howell: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA. ORCID
  11. Brian D Carey: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA. ORCID
  12. Suma Ravulapalli: Diagnostics System Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  13. Jo Lynne Raymond: Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  14. John M Dye: Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
  15. Andrew S Herbert: Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA. ORCID

Abstract

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model. EBOV infection of ferrets by either route resulted in uniform lethality in 5-6.5 days post infection (dpi) in a dose-dependent manner, with IM-infected ferrets succumbing significantly earlier than AE-infected ferrets. EBOV disease progression differed between AE and IM routes, with significant viremia and presence of virus in target organs occurring earlier in the AE model. In contrast, significant fever, clinical signs of disease, liver pathology, and systemic inflammation occurred earlier in the IM EBOV model. Hepatocellular damage and splenic pathology were noted in both models, while pronounced lung pathology and renal impairment were exclusive to the AE and IM models, respectively. These results demonstrate that small-particle AE and IM ferret EBOV models share numerous common features with NHP and human EBOV infection by these routes and will therefore be useful for the development of vaccine and therapeutic countermeasures.

Keywords

References

  1. J Infect Dis. 2018 Nov 22;218(suppl_5):S471-S474 [PMID: 29889278]
  2. Sci Rep. 2022 Apr 5;12(1):5680 [PMID: 35383204]
  3. Sci Rep. 2012;2:811 [PMID: 23155478]
  4. Viruses. 2012 Oct 15;4(10):2115-36 [PMID: 23202456]
  5. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  6. mBio. 2015 Feb 19;6(2):e00137 [PMID: 25698835]
  7. PLoS Negl Trop Dis. 2016 Jun 24;10(6):e0004775 [PMID: 27341030]
  8. Lancet. 2019 Mar 2;393(10174):936-948 [PMID: 30777297]
  9. J Virol. 2021 Nov 23;95(24):e0083321 [PMID: 34586862]
  10. J Virol. 2018 Dec 10;93(1): [PMID: 30333174]
  11. J Infect Dis. 2023 Nov 13;228(Suppl 7):S604-S616 [PMID: 37145930]
  12. Oncotarget. 2017 Jul 11;8(28):46262-46272 [PMID: 28545034]
  13. Viruses. 2022 Apr 09;14(4): [PMID: 35458510]
  14. Viruses. 2021 Nov 17;13(11): [PMID: 34835103]
  15. Lancet. 1995 Dec 23-30;346(8991-8992):1669-71 [PMID: 8551825]
  16. Viruses. 2019 Oct 12;11(10): [PMID: 31614743]
  17. Antiviral Res. 2019 May;165:1-10 [PMID: 30836107]
  18. Vopr Virusol. 1995 May-Jun;40(3):113-5 [PMID: 7676671]
  19. Int J Exp Pathol. 1995 Aug;76(4):227-36 [PMID: 7547435]
  20. J Infect Dis. 2017 Feb 15;215(4):554-558 [PMID: 28011922]
  21. Biosecur Bioterror. 2004;2(3):186-91 [PMID: 15588056]
  22. Virology. 2015 May;479-480:259-70 [PMID: 25816764]
  23. Microbes Infect. 2011 Oct;13(11):930-6 [PMID: 21651988]
  24. BMC Genomics. 2012 Jul 02;13:296 [PMID: 22748112]
  25. J Infect Dis. 2018 Nov 22;218(suppl_5):S448-S452 [PMID: 29955887]
  26. Sci Rep. 2021 Sep 30;11(1):19458 [PMID: 34593911]
  27. J Pharmacol Toxicol Methods. 2004 Jan-Feb;49(1):39-55 [PMID: 14670693]
  28. Antiviral Res. 2014 Apr;104:153-5 [PMID: 24462697]
  29. J Infect Dis. 2018 Nov 22;218(suppl_5):S486-S495 [PMID: 30476250]
  30. Pathogens. 2021 Mar 04;10(3): [PMID: 33806375]
  31. Genome Med. 2021 Jan 11;13(1):5 [PMID: 33430949]
  32. Arch Virol. 2010 Dec;155(12):2035-9 [PMID: 20842393]
  33. Am J Physiol. 1947 Jul 1;150(1):78-83 [PMID: 20252829]
  34. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  35. Cell Mol Immunol. 2023 Mar;20(3):217-251 [PMID: 36725964]
  36. PLoS Pathog. 2019 Oct 11;15(10):e1007778 [PMID: 31603920]
  37. Cell Host Microbe. 2019 Jan 9;25(1):49-58.e5 [PMID: 30629918]
  38. J Med Microbiol. 2012 Jan;61(Pt 1):8-15 [PMID: 21852521]
  39. N Engl J Med. 2016 Aug 11;375(6):587-96 [PMID: 27509108]
  40. ILAR J. 2022 Jan 7;61(1):62-71 [PMID: 33951727]
  41. J Infect Dis. 2018 Nov 22;218(suppl_5):S466-S470 [PMID: 29878131]
  42. Vet Pathol. 2013 May;50(3):514-29 [PMID: 23262834]
  43. mSphere. 2018 Oct 31;3(5): [PMID: 30381349]
  44. Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360 [PMID: 30398656]
  45. Nucleic Acids Res. 2016 Jan 4;44(D1):D481-7 [PMID: 26656494]
  46. Vopr Virusol. 1995 Jul-Aug;40(4):158-61 [PMID: 7483565]
  47. J Infect Dis. 2023 Nov 13;228(Suppl 7):S594-S603 [PMID: 37288605]
  48. J Infect Dis. 2016 Aug 15;214(4):565-9 [PMID: 27354371]
  49. Vet Pathol. 2010 Sep;47(5):831-51 [PMID: 20807825]
  50. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551 [PMID: 33125081]
  51. J Infect Dis. 2011 Jul 15;204(2):200-8 [PMID: 21571728]
  52. Bioinformatics. 2020 Apr 15;36(8):2628-2629 [PMID: 31882993]
  53. Nucleic Acids Res. 2010 Jan;38(Database issue):D492-6 [PMID: 19854944]
  54. BMJ. 2014 Oct 13;349:g6200 [PMID: 25313199]
  55. Vet Pathol. 2015 Jan;52(1):21-5 [PMID: 24829285]
  56. Nucleic Acids Res. 2018 Jan 4;46(D1):D661-D667 [PMID: 29136241]
  57. Viruses. 2012 Dec 03;4(12):3468-93 [PMID: 23207275]
  58. J Virol. 2016 Sep 29;90(20):9209-23 [PMID: 27489269]
  59. J Infect Dis. 2016 Oct 15;214(suppl 3):S268-S274 [PMID: 27471321]

Grants

  1. CB10779/Defense Threat Reduction Agency

MeSH Term

Animals
Ferrets
Hemorrhagic Fever, Ebola
Disease Models, Animal
Ebolavirus
Aerosols
Lung
Liver
Viremia
Male
Injections, Intramuscular
Female

Chemicals

Aerosols

Word Cloud

Created with Highcharts 10.0.0EBOVmodelsmodelAEIMdiseaseinfectionferretvirusferretsearlierpathologyEbolaNHPsmall-particleaerosolprogressionintramuscularroutessignificantcausesseverehumansanimalneededevaluateefficacyvaccinestherapeuticsnon-humanprimaterodentwellcharacterizedgrowingneedintermediateprovidefirstreportcomparedeitherrouteresulteduniformlethality5-65dayspostdpidose-dependentmannerIM-infectedsuccumbingsignificantlyAE-infecteddifferedviremiapresencetargetorgansoccurringcontrastfeverclinicalsignsliversystemicinflammationoccurredHepatocellulardamagesplenicnotedpronouncedlungrenalimpairmentexclusiverespectivelyresultsdemonstratesharenumerouscommonfeatureshumanwillthereforeusefuldevelopmentvaccinetherapeuticcountermeasuresSmall-ParticleAerosolModelEbolavirusZaireInfectionFerretsEVDsmallparticle

Similar Articles

Cited By