Segmentation of the iliac crest from CT-data for virtual surgical planning of facial reconstruction surgery using deep learning.

Stefan Raith, Tobias Pankert, J��natas de Souza Nascimento, Srikrishna Jaganathan, Florian Peters, Mathias Wien, Frank H��lzle, Ali Modabber
Author Information
  1. Stefan Raith: Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstra��e 30, 52074, Aachen, Germany. sraith@ukaachen.de.
  2. Tobias Pankert: Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstra��e 30, 52074, Aachen, Germany.
  3. J��natas de Souza Nascimento: Inzipio GmbH, Krantzstr. 7 Building 80, 52070, Aachen, Germany.
  4. Srikrishna Jaganathan: Inzipio GmbH, Krantzstr. 7 Building 80, 52070, Aachen, Germany.
  5. Florian Peters: Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstra��e 30, 52074, Aachen, Germany.
  6. Mathias Wien: Institute of Imaging and Computer Vision, RWTH Aachen University, Kopernikusstra��e 16, 52074, Aachen, Germany.
  7. Frank H��lzle: Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstra��e 30, 52074, Aachen, Germany.
  8. Ali Modabber: Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstra��e 30, 52074, Aachen, Germany.

Abstract

BACKGROUND AND OBJECTIVES: For the planning of surgical procedures involving the bony reconstruction of the mandible, the autologous iliac crest graft, along with the fibula graft, has become established as a preferred donor region. While computer-assisted planning methods are increasingly gaining importance, the necessary preparation of geometric data based on CT imaging remains largely a manual process. The aim of this work was to develop and test a method for the automated segmentation of the iliac crest for subsequent reconstruction planning.
METHODS: A total of 1,398 datasets with manual segmentations were obtained as ground truth, with a subset of 400 datasets used for training and validation of the Neural Networks and another subset of 177 datasets used solely for testing. A deep Convolutional Neural Network implemented in a 3D U-Net architecture using Tensorflow was employed to provide a pipeline for automatic segmentation. Transfer learning was applied for model training optimization. Evaluation metrics included the Dice Similarity Coefficient, Symmetrical Average Surface Distance, and a modified 95% Hausdorff Distance focusing on regions relevant for transplantation.
RESULTS: The automated segmentation achieved high accuracy, with qualitative and quantitative assessments demonstrating predictions closely aligned with ground truths. Quantitative evaluation of the correspondence yielded values for geometric agreement in the transplant-relevant area of 92% +/- 7% (Dice coefficient) and average surface deviations of 0.605 +/- 0.41 mm. In all cases, the bones were identified as contiguous objects in the correct spatial orientation. The geometries of the iliac crests were consistently and completely recognized on both sides without any gaps.
CONCLUSIONS: The method was successfully used to extract the individual geometries of the iliac crest from CT data. Thus, it has the potential to serve as an essential starting point in a digitized planning process and to provide data for subsequent surgical planning. The complete automation of this step allows for efficient and reliable preparation of anatomical data for reconstructive surgeries.

Keywords

References

  1. JMIR Serious Games. 2023 Jan 19;11:e40541 [PMID: 36656632]
  2. J Clin Med. 2021 Mar 16;10(6): [PMID: 33809600]
  3. BMC Cancer. 2022 Dec 2;22(1):1252 [PMID: 36460978]
  4. Int J Oral Maxillofac Surg. 2020 Sep;49(9):1153-1161 [PMID: 32197824]
  5. Ann Anat. 2022 Jan;239:151834 [PMID: 34547412]
  6. Oral Oncol. 2010 Feb;46(2):71-6 [PMID: 20036611]
  7. Skeletal Radiol. 2020 Mar;49(3):387-395 [PMID: 31396667]
  8. Med Eng Phys. 2018 Jan;51:6-16 [PMID: 29096986]
  9. Plast Reconstr Surg. 1979 Dec;64(6):745-59 [PMID: 390575]
  10. Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1479-1488 [PMID: 36637748]
  11. Oral Oncol. 2022 Oct;133:106058 [PMID: 35952582]
  12. Comput Biol Med. 2019 Aug;111:103345 [PMID: 31279167]
  13. Ing Rech Biomed. 2022 Apr;43(2):114-119 [PMID: 32837679]
  14. Plast Reconstr Surg. 1989 Sep;84(3):391-403; discussion 404-5 [PMID: 2762397]
  15. IEEE Trans Image Process. 2019 Nov 12;: [PMID: 31725379]
  16. Innov Surg Sci. 2023 Dec 6;8(3):137-148 [PMID: 38077486]
  17. J Craniomaxillofac Surg. 2019 Sep;47(9):1378-1386 [PMID: 31331845]
  18. Eur Ann Otorhinolaryngol Head Neck Dis. 2021 Jan;138(1):23-27 [PMID: 32620425]
  19. Med Image Anal. 2021 Jul;71:102035 [PMID: 33813286]
  20. Med Image Anal. 2019 Apr;53:197-207 [PMID: 30802813]
  21. Insights Imaging. 2021 Jul 7;12(1):93 [PMID: 34232404]
  22. Front Oncol. 2021 Nov 26;11:719028 [PMID: 34900674]
  23. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Jan;111(1):51-7 [PMID: 20591701]
  24. Ann Plast Surg. 1982 Nov;9(5):361-76 [PMID: 6758673]
  25. J Oral Maxillofac Surg. 2010 Nov;68(11):2706-13 [PMID: 20594630]
  26. Int J Comput Assist Radiol Surg. 2021 May;16(5):749-756 [PMID: 33864189]
  27. Med Phys. 2021 Apr;48(4):1707-1719 [PMID: 33496971]
  28. Plast Reconstr Surg. 2003 Nov;112(6):1517-25; discussion 1526-7 [PMID: 14578779]
  29. Comput Math Methods Med. 2021 Jul 3;2021:2485934 [PMID: 34306173]
  30. Arch Otolaryngol Head Neck Surg. 1998 Jan;124(1):46-55 [PMID: 9440780]
  31. J Clin Med. 2021 Apr 29;10(9): [PMID: 33946731]

MeSH Term

Humans
Ilium
Deep Learning
Tomography, X-Ray Computed
Plastic Surgery Procedures
Bone Transplantation
Neural Networks, Computer
Surgery, Computer-Assisted
Mandible
Image Processing, Computer-Assisted
Imaging, Three-Dimensional

Word Cloud

Created with Highcharts 10.0.0planningiliacsurgicalcrestdatareconstructionsegmentationdatasetsusedlearninggraftpreparationgeometricCTmanualprocessmethodautomatedsubsequentgroundsubsettrainingNeuraldeepConvolutionalusingprovideDiceDistance+/-0geometriesSegmentationBACKGROUNDANDOBJECTIVES:proceduresinvolvingbonymandibleautologousalongfibulabecomeestablishedpreferreddonorregioncomputer-assistedmethodsincreasinglygainingimportancenecessarybasedimagingremainslargelyaimworkdeveloptestMETHODS:total1398segmentationsobtainedtruth400validationNetworksanother177solelytestingNetworkimplemented3DU-NetarchitectureTensorflowemployedpipelineautomaticTransferappliedmodeloptimizationEvaluationmetricsincludedSimilarityCoefficientSymmetricalAverageSurfacemodified95%HausdorfffocusingregionsrelevanttransplantationRESULTS:achievedhighaccuracyqualitativequantitativeassessmentsdemonstratingpredictionscloselyalignedtruthsQuantitativeevaluationcorrespondenceyieldedvaluesagreementtransplant-relevantarea92%7%coefficientaveragesurfacedeviations60541 mmcasesbonesidentifiedcontiguousobjectscorrectspatialorientationcrestsconsistentlycompletelyrecognizedsideswithoutgapsCONCLUSIONS:successfullyextractindividualThuspotentialserveessentialstartingpointdigitizedcompleteautomationstepallowsefficientreliableanatomicalreconstructivesurgeriesCT-datavirtualfacialsurgeryComputedtomographyneuralnetworksDeepMedicalimageanalysisPelvisVirtual

Similar Articles

Cited By