N-Acetyl cysteine exhibits antimicrobial and anti-virulence activity against Salmonella enterica.

Selwan Hamed, Mohamed Emara, Payman Tohidifar, Christopher V Rao
Author Information
  1. Selwan Hamed: Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University- Ain Helwan, Helwan, Cairo, Egypt. ORCID
  2. Mohamed Emara: Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University- Ain Helwan, Helwan, Cairo, Egypt.
  3. Payman Tohidifar: Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
  4. Christopher V Rao: Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

Abstract

Salmonella enterica is a common foodborne pathogen that causes intestinal illness varying from mild gastroenteritis to life-threatening systemic infections. The frequency of outbreaks due to multidrug-resistant Salmonella has been increased in the past few years with increasing numbers of annual deaths. Therefore, new strategies to control the spread of antimicrobial resistance are required. In this work, we found that N-acetyl cysteine (NAC) inhibits S. enterica at MIC of 3 mg ml-1 and synergistically activates the bactericidal activities of common antibiotics from three-fold for ampicillin and apramycin up to1000-fold for gentamycin. In addition, NAC inhibits the expression of virulence genes at sub-inhibitory concentrations in a dose-dependent manner. The whole-genome sequencing revealed that continuous exposure of S. enterica to NAC leads to the development of resistance; these resistant strains are attenuated for virulence. These results suggest that NAC may be a promising adjuvant to antibiotics for treating S. enterica in combination with other antibiotics.

References

  1. Trop Doct. 2010 Jul;40(3):160-2 [PMID: 20478986]
  2. J Bacteriol. 2008 Apr;190(7):2470-8 [PMID: 18245288]
  3. MMWR Morb Mortal Wkly Rep. 2008 May 16;57(19):521-4 [PMID: 18480745]
  4. Asian Pac J Trop Med. 2014 Feb;7(2):141-3 [PMID: 24461528]
  5. Antimicrob Agents Chemother. 2018 Oct 24;62(11): [PMID: 30126957]
  6. J Bacteriol. 2020 Jun 9;202(13): [PMID: 32312744]
  7. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  8. Innov Clin Neurosci. 2011 Jan;8(1):10-4 [PMID: 21311702]
  9. Respiration. 2000;67(5):552-8 [PMID: 11070462]
  10. Lancet. 2015 Mar 21;385(9973):1136-45 [PMID: 25458731]
  11. PLoS Pathog. 2010 Jul 29;6(7):e1001025 [PMID: 20686667]
  12. Respir Med. 2016 Aug;117:190-7 [PMID: 27492531]
  13. Adv Food Nutr Res. 2018;86:115-136 [PMID: 30077219]
  14. Antimicrob Agents Chemother. 2010 Aug;54(8):3529-30 [PMID: 20547812]
  15. Int J Pharm. 2017 Nov 30;533(2):463-469 [PMID: 28377314]
  16. J Med Microbiol. 2018 May;67(5):702-708 [PMID: 29521616]
  17. Acta Clin Belg. 2015 Aug;70(4):265-71 [PMID: 25819116]
  18. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  19. BMC Microbiol. 2019 Sep 5;19(1):211 [PMID: 31488053]
  20. Clin Pharmacol Ther. 2019 Oct;106(4):884-890 [PMID: 31206613]
  21. Infect Genet Evol. 2005 Jan;5(1):1-9 [PMID: 15567133]
  22. J Family Community Med. 2010 Jan;17(1):29-34 [PMID: 22022668]
  23. Lancet Respir Med. 2017 Jan;5(1):e1-e2 [PMID: 28000596]
  24. J Antimicrob Chemother. 2003 Jul;52(1):1 [PMID: 12805255]
  25. Cells. 2024 Mar 14;13(6): [PMID: 38534358]
  26. J Antimicrob Chemother. 2018 Sep 1;73(9):2388-2395 [PMID: 29846610]
  27. Hear Res. 2017 Dec 14;358:10-21 [PMID: 29304389]
  28. Antimicrob Agents Chemother. 2008 Apr;52(4):1278-84 [PMID: 18212096]
  29. J Thorac Dis. 2018 Jan;10(1):212-218 [PMID: 29600051]
  30. Mol Microbiol. 1995 Nov;18(4):715-27 [PMID: 8817493]
  31. Appl Environ Microbiol. 2020 Jan 21;86(3): [PMID: 31732576]
  32. Altern Med Rev. 1998 Apr;3(2):114-27 [PMID: 9577247]
  33. Mol Microbiol. 1999 Jul;33(1):167-76 [PMID: 10411733]
  34. mBio. 2014 Aug 26;5(5):e01611-14 [PMID: 25161191]
  35. J Basic Microbiol. 2017 Aug;57(8):659-668 [PMID: 28543603]
  36. J Bacteriol. 2010 Nov;192(21):5767-77 [PMID: 20833811]
  37. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  38. J Diabetes Res. 2020 Jan 27;2020:9589507 [PMID: 32083136]
  39. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  40. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27919900]
  41. Antimicrob Agents Chemother. 2018 Oct 24;62(11): [PMID: 30201815]
  42. Antioxidants (Basel). 2019 Apr 28;8(5): [PMID: 31035402]
  43. PLoS One. 2018 Oct 1;13(10):e0203941 [PMID: 30273348]
  44. Chemotherapy. 2001 May-Jun;47(3):208-14 [PMID: 11306790]
  45. Adv Pharmacol. 1997;38:205-27 [PMID: 8895810]
  46. Methods Mol Biol. 2017;1593:73-83 [PMID: 28389945]
  47. Artif Cells Nanomed Biotechnol. 2014 Aug;42(4):222-8 [PMID: 24053379]
  48. Pathogens. 2019 Aug 01;8(3): [PMID: 31374947]

MeSH Term

Salmonella enterica
Acetylcysteine
Microbial Sensitivity Tests
Virulence
Anti-Bacterial Agents
Animals
Mice
Salmonella Infections
Humans
Drug Resistance, Multiple, Bacterial

Chemicals

Acetylcysteine
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0entericaNACSalmonellaSantibioticscommonantimicrobialresistancecysteineinhibitsvirulencefoodbornepathogencausesintestinalillnessvaryingmildgastroenteritislife-threateningsystemicinfectionsfrequencyoutbreaksduemultidrug-resistantincreasedpastyearsincreasingnumbersannualdeathsThereforenewstrategiescontrolspreadrequiredworkfoundN-acetylMIC3mgml-1synergisticallyactivatesbactericidalactivitiesthree-foldampicillinapramycinto1000-foldgentamycinadditionexpressiongenessub-inhibitoryconcentrationsdose-dependentmannerwhole-genomesequencingrevealedcontinuousexposureleadsdevelopmentresistantstrainsattenuatedresultssuggestmaypromisingadjuvanttreatingcombinationN-Acetylexhibitsanti-virulenceactivity

Similar Articles

Cited By