Fibre: The Forgotten Carbohydrate in Sports Nutrition Recommendations.

Laura Mancin, Louise M Burke, Ian Rollo
Author Information
  1. Laura Mancin: Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. L.Mancin@ljmu.ac.uk. ORCID
  2. Louise M Burke: Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia. ORCID
  3. Ian Rollo: Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicester, UK. ORCID

Abstract

Although dietary guidelines concerning carbohydrate intake for athletes are well established, these do not include recommendations for daily fibre intake. However, there are many scenarios in sports nutrition in which common practice involves the manipulation of fibre intake to address gastrointestinal comfort around exercise, or acute or chronic goals around the management of body mass or composition. The effect of fibre intake in overall health is also important, particularly in combination with other dietary considerations such as the elevated protein requirements in this population. An athlete's habitual intake of dietary fibre should be assessed. If less than 20 g a day, athletes may consider dietary interventions to gradually increase intake. It is proposed that a ramp phase is adopted to gradually increase fibre ingestion to���~���30 g of fibre a day (which includes���~���2 g of beta-glucan) over a duration of 6 weeks. The outcomes of achieving a daily fibre intake are to help preserve athlete gut microbiome diversity and stability, intestinal barrier function as well as the downstream effects of short-chain fatty acids produced following the fermentation of microbiome accessible carbohydrates. Nevertheless, there are scenarios in which daily manipulation of fibre intake, either to reduce or increase intake, may be valuable in assisting the athlete to maintain gastrointestinal comfort during exercise or to contribute to body mass/composition goals. Although further research is required, the aim of this current opinion paper is to ensure that fibre is not forgotten as a nutrient in the athlete's diet.

References

  1. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl. 1):S17-27. [PMID: 21660838]
  2. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl. 1):S25-33. [PMID: 24791914]
  3. Impey SG, Hammond KM, Shepherd SO, Sharples AP, Stewart C, Limb M, et al. Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiol Rep. 2016;4(10): e12803. [PMID: 27225627]
  4. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement: nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3):543���68. [PMID: 26891166]
  5. Rollo I, Gonzalez JT, Fuchs CJ, van Loon LJC, Williams C. Primary, secondary, and tertiary effects of carbohydrate ingestion during exercise. Sports Med. 2020;50(11):1863���71. [PMID: 32936440]
  6. Liu L, Wang S, Liu J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: a systematic review and meta-analysis of cohort studies. Mol Nutr Food Res. 2015;59(1):139���46. [PMID: 25382817]
  7. Fu L, Zhang G, Qian S, Zhang Q, Tan M. Associations between dietary fiber intake and cardiovascular risk factors: an umbrella review of meta-analyses of randomized controlled trials. Front Nutr. 2022;9: 972399. [PMID: 36172520]
  8. Deehan EC, Duar RM, Armet AM, Perez-Mu��oz ME, Jin M, Walter J. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol Spectr. 2017;5(5). https://doi.org/10.1128/microbiolspec.BAD-0019-2017 .
  9. Sonnenburg ED, Sonnenburg JL. The ancestral and industrialized gut microbiota and implications for human health. Nat Rev Microbiol. 2019;17(6):383���90. [PMID: 31089293]
  10. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779���86. [PMID: 25156449]
  11. Sonnenburg JL, Sonnenburg ED. Vulnerability of the industrialized microbiota. Science. 2019;366(6464):eaaw9255. [PMID: 31649168]
  12. Parker C, Hunter KA, Johnson MA, Sharpe GR, Gibson GR, Walton GE, et al. Effects of 24-week prebiotic intervention on self-reported upper respiratory symptoms, gastrointestinal symptoms, and markers of immunity in elite rugby union players. Eur J Sport Sci. 2023;23(11):2232���9. [PMID: 37331347]
  13. Amicucci MJ, Nandita E, Galermo AG, Castillo JJ, Chen S, Park D, et al. A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nat Commun. 2020;11(1):3963. [PMID: 32770134]
  14. Phillips KM, Haytowitz DB, Pehrsson PR. Implications of two different methods for analyzing total dietary fiber in foods for food composition databases. J Food Compos Anal. 2019;84: 103253. [DOI: 10.1016/j.jfca.2019.103253]
  15. Costa RJS, Hoffman MD, Stellingwerff T. Considerations for ultra-endurance activities: part 1: nutrition. Res Sports Med. 2019;27(2):166���81. [PMID: 30056753]
  16. Scrivin R, Costa RJS, Pelly F, Lis D, Slater G. An exploratory study of the management strategies reported by endurance athletes with exercise-associated gastrointestinal symptoms. Front Nutr. 2022;9:1003445. [PMID: 36438762]
  17. Gaskell SK, Rauch CE, Costa RJS. Gastrointestinal assessment and therapeutic intervention for the management of exercise-associated gastrointestinal symptoms: a case series translational and professional practice approach. Front Physiol. 2021;12: 719142. [PMID: 34557109]
  18. Gaskell SK, Taylor B, Muir J, Costa RJS. Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Appl Physiol Nutr Metab. 2020;45(6):569���80. [PMID: 31652404]
  19. Scrivin R, Slater G, Mika A, Rauch C, Young P, Martinez I, et al. The impact of 48 h high carbohydrate diets with high and low FODMAP content on gastrointestinal status and symptoms in response to endurance exercise, and subsequent endurance performance. Appl Physiol Nutr Metab. 2024;49(6):773���91. [PMID: 38359412]
  20. Burke LM, Jeukendrup AE, Jones AM, Mooses M. Contemporary nutrition strategies to optimize performance in distance runners and race walkers. Int J Sport Nutr Exerc Metab. 2019;29(2):117���29. [PMID: 30747558]
  21. Burke LM, Millet G, Tarnopolsky MA, International Association of Athletics Federations. Nutrition for distance events. J Sports Sci. 2007;25(Suppl 1):S29-38. [PMID: 18049981]
  22. Hurford M. What bronze medalist Michael Woods eats to fuel his rides. 2018. Available from: https://www.bicycling.com/health-nutrition/a24686718/michael-woods-pro-cyclist-diet/ . Accessed 21 Dec 2024.
  23. International Olympic Committee. Michael Phelps' 10000 calories diet: what the American swimmer ate while training for Beijing Olympics? [Know the extraordinary diet behind the swimmer's remarkable success]. 2001. https://olympics.com/en/news/michael-phelps-10000-calories-diet-what-the-american-swimmer-ate-while-training- .
  24. Saris WH, van Erp-Baart MA, Brouns F, Westerterp KR, ten Hoor F. Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. Int J Sports Med. 1989;10(Suppl. 1):S26-31. [PMID: 2744926]
  25. Close GL, Kasper AM, Walsh NP, Maughan RJ. ���Food first but not always food only���: recommendations for using dietary supplements in sport. Int J Sport Nutr Exerc Metab. 2022;32(5):371���86. [PMID: 35279015]
  26. Slater LMBG. Supplements and sports foods in aport. In: Burke LDV, Minehan M, editors. Clinical sports nutrition. 6th ed. McGraw Hill Education (Australia) Pty Ltd; 2021.
  27. Cycling BS. Team Sky's unprecedented release of data reveals how British rider won Giro d'Italia. Available from: https://www.bbc.com/sport/cycling/44694122 . Accessed 21 Dec 2024.
  28. Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344���51. [PMID: 21775906]
  29. Cox GR, Snow RJ, Burke LM. Race-day carbohydrate intakes of elite triathletes contesting olympic-distance triathlon events. Int J Sport Nutr Exerc Metab. 2010;20(4):299���306. [PMID: 20739718]
  30. Manore MM. Weight management for athletes and active individuals 2018. Available from: https://www.gssiweb.org/sports-science-exchange/article/weight-management-for-athletes-and-active-individuals#:~:text=Higher%20protein%20diets%20have%20been,and%20reductions%20in%20energy%20intake . Accessed 21 Dec 2024.
  31. Stellingwerff T. Case study: body composition periodization in an Olympic-level female middle-distance runner over a 9-year career. Int J Sport Nutr Exerc Metab. 2018;28(4):428���33. [PMID: 29140157]
  32. Reale R, Slater G, Burke LM. Acute-weight-loss strategies for combat sports and applications to Olympic success. Int J Sports Physiol Perform. 2017;12(2):142���51. [PMID: 27347784]
  33. Reale R, Slater G, Cox GR, Dunican IC, Burke LM. The effect of water loading on acute weight loss following fluid restriction in combat sports athletes. Int J Sport Nutr Exerc Metab. 2018;28(6):565���73. [PMID: 29182412]
  34. Dai FJ, Chau CF. Classification and regulatory perspectives of dietary fiber. J Food Drug Anal. 2017;25(1):37���42. [PMID: 28911542]
  35. Lin D, Peters BA, Friedlander C, Freiman HJ, Goedert JJ, Sinha R, et al. Association of dietary fibre intake and gut microbiota in adults. Br J Nutr. 2018;120(9):1014���22. [PMID: 30355393]
  36. Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017;57(2):237���53. [PMID: 25921546]
  37. Morrison KE, Jasarevic E, Howard CD, Bale TL. It���s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome. 2020;8(1):15. [PMID: 32046785]
  38. Muller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10(3):275. [PMID: 29495569]
  39. Gibb RD, Sloan KJ, McRorie JW Jr. Psyllium is a natural nonfermented gel-forming fiber that is effective for weight loss: a comprehensive review and meta-analysis. J Am Assoc Nurse Pract. 2023;35(8):468���76. [PMID: 37163454]
  40. Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101���16. [PMID: 33208922]
  41. So D, Gibson PR, Muir JG, Yao CK. Dietary fibres and IBS: translating functional characteristics to clinical value in the era of personalised medicine. Gut. 2021;70(12):2383���94. [PMID: 34417199]
  42. Gibson PR, Shepherd SJ. Personal view: food for thought���western lifestyle and susceptibility to Crohn���s disease: the FODMAP hypothesis. Aliment Pharmacol Ther. 2005;21(12):1399���409. [PMID: 15948806]
  43. Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome: implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46(3):246���65. [PMID: 28589631]
  44. Burkitt DP, Trowell HC. Dietary fibre and Western diseases. Ir Med J. 1977;70(9):272���7. [PMID: 893060]
  45. Hipsley EH. Dietary ���fibre��� and pregnancy toxaemia. Br Med J. 1953;2(4833):420���2. [PMID: 13066743]
  46. Cummings JH. Microbial digestion of complex carbohydrates in man. Proc Nutr Soc. 1984;43(1):35���44. [PMID: 6709634]
  47. McBurney MI, Thompson LU. Fermentative characteristics of cereal brans and vegetable fibers. Nutr Cancer. 1990;13(4):271���80. [PMID: 2161101]
  48. Lupton JR. Microbial degradation products influence colon cancer risk: the butyrate controversy. J Nutr. 2004;134(2):479���82. [PMID: 14747692]
  49. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6(8):1535���43. [PMID: 22343308]
  50. Armstrong HK, Bording-Jorgensen M, Santer DM, Zhang Z, Valcheva R, Rieger AM, et al. Unfermented beta-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology. 2023;164(2):228���40. [PMID: 36183751]
  51. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(9):5334���40. [PMID: 20394371]
  52. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10(5):507���14. [PMID: 22036470]
  53. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4(1):33. [PMID: 27357127]
  54. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE. 2010;5(11): e15046. [PMID: 21151493]
  55. Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705���15. [PMID: 29902436]
  56. Mancin L, Rollo I, Mota JF, Piccini F, Carletti M, Susto GA, et al. Optimizing microbiota profiles for athletes. Exerc Sport Sci Rev. 2021;49(1):42���9. [PMID: 33044333]
  57. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125-36.e8. [PMID: 27814509]
  58. Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol. 2021;18(4):866���77. [PMID: 33707689]
  59. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241���55. [PMID: 33093662]
  60. Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840���8. [PMID: 32694821]
  61. Morkl S, Lackner S, Meinitzer A, Mangge H, Lehofer M, Halwachs B, et al. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur J Nutr. 2018;57(8):2985���97. [PMID: 30043185]
  62. Gonzalez A, Krieg R, Massey HD, Carl D, Ghosh S, Gehr TWB, et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol Dial Transplant. 2019;34(5):783���94. [PMID: 30085297]
  63. Ma X, Fan PX, Li LS, Qiao SY, Zhang GL, Li DF. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci. 2012;90(Suppl. 4):266���8. [PMID: 23365351]
  64. Feng W, Wu Y, Chen G, Fu S, Li B, Huang B, et al. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner. Cell Physiol Biochem. 2018;47(4):1617���29. [PMID: 29949795]
  65. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775���86. [PMID: 21933985]
  66. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE. 2011;6(6): e20944. [PMID: 21695273]
  67. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091���103. [PMID: 19240062]
  68. Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70(6):443���59. [PMID: 1938669]
  69. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142(5):1100-1.e2. [PMID: 22326433]
  70. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73(4):1073���8. [PMID: 17189447]
  71. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-53.e21. [PMID: 27863247]
  72. Violi F, Cammisotto V, Bartimoccia S, Pignatelli P, Carnevale R, Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023;20(1):24���37. [PMID: 35840742]
  73. Drenowatz C, Eisenmann JC, Carlson JJ, Pfeiffer KA, Pivarnik JM. Energy expenditure and dietary intake during high-volume and low-volume training periods among male endurance athletes. Appl Physiol Nutr Metab. 2012;37(2):199���205. [PMID: 22360344]
  74. Caccialanza R, Cameletti B, Cavallaro G. Nutritional intake of young Italian high-level soccer players: under-reporting is the essential outcome. J Sports Sci Med. 2007;6(4):538���42. [PMID: 24149489]
  75. Aerenhouts D, Hebbelinck M, Poortmans JR, Clarys P. Nutritional habits of Flemish adolescent sprint athletes. Int J Sport Nutr Exerc Metab. 2008;18(5):509���23. [PMID: 19033612]
  76. Jones JM. CODEX-aligned dietary fiber definitions help to bridge the ���fiber gap.��� Nutr J. 2014;13:34. [PMID: 24725724]
  77. Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019;16(1):21. [PMID: 31053143]
  78. Capling L, Beck KL, Gifford JA, Slater G, Flood VM, O���Connor H. Validity of dietary assessment in athletes: a systematic review. Nutrients. 2017;9(12):1313. [PMID: 29207495]
  79. Gonlachanvit S, Coleski R, Owyang C, Hasler W. Inhibitory actions of a high fibre diet on intestinal gas transit in healthy volunteers. Gut. 2004;53(11):1577���82. [PMID: 15479674]
  80. Zhang M, Juraschek SP, Appel LJ, Pasricha PJ, Miller ER 3rd, Mueller NT. Effects of high-fiber diets and macronutrient substitution on bloating: findings from the OmniHeart Trial. Clin Transl Gastroenterol. 2020;11(1): e00122. [PMID: 31972610]
  81. McKeown NM, Fahey GC Jr, Slavin J, van der Kamp JW. Fibre intake for optimal health: how can healthcare professionals support people to reach dietary recommendations? BMJ. 2022;378: e054370. [PMID: 35858693]
  82. Wiacek J, Szurkowska J, Krysciak J, Galecka M, Karolkiewicz J. No changes in the abundance of selected fecal bacteria during increased carbohydrates consumption period associated with the racing season in amateur road cyclists. PeerJ. 2023;11: e14594. [PMID: 36700000]
  83. Murtaza N, Burke LM, Vlahovich N, Charlesson B, O���Neill H, Ross ML, et al. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019;11(2):261. [PMID: 30682843]
  84. Phillips SM, Van Loon LJ. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl. 1):S29-38. [PMID: 22150425]
  85. Clarke SF, Murphy EF, O���Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913���20. [PMID: 25021423]
  86. Sanchez JI, Marzorati M, Grootaert C, Baran M, Van Craeyveld V, Courtin CM, et al. Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microb Biotechnol. 2009;2(1):101���13. [PMID: 21261885]
  87. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(Suppl 1):S79-85. [PMID: 24791919]
  88. Pugh JN, Fearn R, Morton JP, Close GL. Gastrointestinal symptoms in elite athletes: time to recognise the problem? Br J Sports Med. 2018;52(8):487���8. [PMID: 29018062]
  89. Pugh JN, Sparks AS, Doran DA, Fleming SC, Langan-Evans C, Kirk B, et al. Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. Eur J Appl Physiol. 2019;119(7):1491���501. [PMID: 30982100]
  90. Depeint F, Tzortzis G, Vulevic J, I���Anson K, Gibson GR. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr. 2008;87(3):785���91. [PMID: 18326619]
  91. Aoe S. Beta-glucan in foods and health benefits. Nutrients. 2021;14(1):96. [PMID: 35010971]
  92. Wang R, Wu X, Lin K, Guo S, Hou Y, Ma R, Wang Q, Wang R. Plasma metabolomics reveals ��-glucan improves muscle strength and exercise capacity in athletes. Metabolites 2022;12(10):988. https://doi.org/10.3390/metabo12100988 . [DOI: 10.3390/metabo12100988]
  93. Zabriskie HA, Blumkaitis JC, Moon JM, Currier BS, Stefan R, Ratliff K, et al. Yeast beta-glucan supplementation downregulates markers of systemic inflammation after heated treadmill exercise. Nutrients. 2020;12(4):1144. [PMID: 32325856]
  94. Heinsbroek SE, Williams DL, Welting O, Meijer SL, Gordon S, de Jonge WJ. Orally delivered beta-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation. Nutr Res. 2015;35(12):1106���12. [PMID: 26500083]
  95. Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn���s disease. Gut. 2011;60(7):923���9. [PMID: 21262918]
  96. Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184(16):4137-53.e14. [PMID: 34256014]
  97. Knight-Sepulveda K, Kais S, Santaolalla R, Abreu MT. Diet and inflammatory bowel disease. Gastroenterol Hepatol (NY). 2015;11(8):511���20.
  98. Deehan EC, Zhang Z, Riva A, Armet AM, Perez-Munoz ME, Nguyen NK, et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome. 2022;10(1):77. [PMID: 35562794]
  99. O���Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. [PMID: 25919227]
  100. Jenkins DJ, Kendall CW, Popovich DG, Vidgen E, Mehling CC, Vuksan V, et al. Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metabolism. 2001;50(4):494���503. [PMID: 11288049]
  101. Pedersen C, Lefevre S, Peters V, Patterson M, Ghatei MA, Morgan LM, et al. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake: a dose-escalation study. Appetite. 2013;66:44���53. [PMID: 23474087]
  102. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151���6. [PMID: 29590046]
  103. Segata N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr Biol. 2015;25(14):R611���3. [PMID: 26196489]
  104. Svedlund J, Sjodin I, Dotevall G. GSRS���a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci. 1988;33(2):129���34. [PMID: 3123181]
  105. Costa RJS, Young P, Gill SK, Snipe RMJ, Gaskell S, Russo I, et al. Assessment of exercise-associated gastrointestinal perturbations in research and practical settings: methodological concerns and recommendations for best practice. Int J Sport Nutr Exerc Metab. 2022;32(5):387���418. [PMID: 35963615]
  106. Mego M, Accarino A, Tzortzis G, Vulevic J, Gibson G, Guarner F, Azpiroz F. Colonic gas homeostasis: mechanisms of adaptation following HOST-G904 galactooligosaccharide use in humans. Neurogastroenterol Motil. 2017;29(9). https://doi.org/10.1111/nmo.13080 .
  107. Mego M, Manichanh C, Accarino A, Campos D, Pozuelo M, Varela E, et al. Metabolic adaptation of colonic microbiota to galactooligosaccharides: a proof-of-concept-study. Aliment Pharmacol Ther. 2017;45(5):670���80. [PMID: 28078750]
  108. Rollo I, Randell RK, Baker L, Leyes JY, Medina Leal D, Lizarraga A, et al. Fluid balance, sweat Na(+) losses, and carbohydrate intake of elite male soccer players in response to low and high training intensities in cool and hot environments. Nutrients. 2021;13(2):401. [PMID: 33513989]

Word Cloud

Created with Highcharts 10.0.0intakefibredietarydailyincreaseAlthoughathleteswellscenariosmanipulationgastrointestinalcomfortaroundexercisegoalsbodyathlete'sdaymaygraduallyathletemicrobiomeguidelinesconcerningcarbohydrateestablishedincluderecommendationsHowevermanysportsnutritioncommonpracticeinvolvesaddressacutechronicmanagementmasscompositioneffectoverallhealthalsoimportantparticularlycombinationconsiderationselevatedproteinrequirementspopulationhabitualassessedless20 gconsiderinterventionsproposedrampphaseadoptedingestionto���~���30 gincludes���~���2 gbeta-glucanduration6 weeksoutcomesachievinghelppreservegutdiversitystabilityintestinalbarrierfunctiondownstreameffectsshort-chainfattyacidsproducedfollowingfermentationaccessiblecarbohydratesNeverthelesseitherreducevaluableassistingmaintaincontributemass/compositionresearchrequiredaimcurrentopinionpaperensureforgottennutrientdietFibre:ForgottenCarbohydrateSportsNutritionRecommendations

Similar Articles

Cited By