Absolute standard hydrogen electrode potential and redox potentials of atoms and molecules: machine learning aided first principles calculations.

Ryosuke Jinnouchi, Ferenc Karsai, Georg Kresse
Author Information
  1. Ryosuke Jinnouchi: Toyota Central R&D Labs., Inc. Yokomichi 41-1 Nagakute Aichi Japan jryosuke@mosk.tytlabs.co.jp. ORCID
  2. Ferenc Karsai: VASP Software GmbH Berggasse 21 A-1090 Vienna Austria.
  3. Georg Kresse: VASP Software GmbH Berggasse 21 A-1090 Vienna Austria.

Abstract

Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models. The application to seven redox couples, including molecules and transition metal ions, demonstrates that the hybrid functional can predict redox potentials across a wide range of potentials with an average error of 140 mV.

References

  1. J Chem Phys. 2007 Jul 14;127(2):024103 [PMID: 17640115]
  2. J Am Chem Soc. 2004 Mar 31;126(12):3928-38 [PMID: 15038747]
  3. J Phys Chem Lett. 2023 Apr 13;14(14):3581-3588 [PMID: 37018477]
  4. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  5. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8368-73 [PMID: 27402761]
  6. J Phys Chem Lett. 2012 Dec 6;3(23):3411-5 [PMID: 26290964]
  7. J Chem Phys. 2019 Mar 21;150(11):114102 [PMID: 30901990]
  8. J Chem Phys. 2010 Dec 28;133(24):244103 [PMID: 21197972]
  9. Phys Rev Lett. 2010 Apr 2;104(13):136403 [PMID: 20481899]
  10. J Chem Phys. 2022 Jul 14;157(2):024103 [PMID: 35840372]
  11. Chem Sci. 2017 Sep 1;8(9):6131-6140 [PMID: 28989643]
  12. Phys Rev Lett. 2017 Jul 7;119(1):016801 [PMID: 28731734]
  13. Phys Chem Chem Phys. 2012 Aug 28;14(32):11245-67 [PMID: 22806244]
  14. J Chem Phys. 2011 Jun 28;134(24):244508 [PMID: 21721644]
  15. J Phys Chem B. 2005 Apr 14;109(14):6793-804 [PMID: 16851765]
  16. Phys Rev B Condens Matter. 1996 Jul 15;54(3):1703-1710 [PMID: 9986014]
  17. J Phys Chem B. 2015 Jan 22;119(3):1152-63 [PMID: 25386900]
  18. J Phys Chem B. 2010 Jun 17;114(23):7894-9 [PMID: 20496903]
  19. J Chem Phys. 2009 Aug 21;131(7):074104 [PMID: 19708729]
  20. Phys Rev Lett. 2023 Feb 17;130(7):078001 [PMID: 36867825]
  21. J Chem Phys. 2020 Jun 21;152(23):234102 [PMID: 32571051]
  22. J Phys Chem B. 2006 Aug 17;110(32):16066-81 [PMID: 16898764]
  23. J Chem Phys. 2024 Oct 7;161(13): [PMID: 39360681]
  24. J Chem Phys. 2015 Dec 28;143(24):244508 [PMID: 26723693]
  25. Phys Chem Chem Phys. 2012 Mar 7;14(9):3208-18 [PMID: 22281951]
  26. J Chem Phys. 2024 Mar 21;160(11): [PMID: 38506284]
  27. J Chem Phys. 2010 Apr 21;132(15):154104 [PMID: 20423165]
  28. Phys Rev Lett. 2007 Apr 6;98(14):146401 [PMID: 17501293]
  29. J Chem Phys. 2021 Mar 7;154(9):094107 [PMID: 33685177]
  30. J Phys Chem Lett. 2018 Jun 21;9(12):3212-3216 [PMID: 29846074]
  31. J Am Chem Soc. 2024 May 29;146(21):14566-14575 [PMID: 38659097]
  32. J Chem Phys. 2018 Jun 14;148(22):222814 [PMID: 29907057]
  33. J Chem Phys. 2009 Oct 21;131(15):154504 [PMID: 20568869]
  34. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 [PMID: 9976227]
  35. J Chem Phys. 2014 Feb 28;140(8):084502 [PMID: 24588180]
  36. J Phys Chem A. 2010 Feb 11;114(5):2189-200 [PMID: 20078102]
  37. Phys Rev Lett. 2019 Jun 7;122(22):225701 [PMID: 31283285]
  38. Nat Commun. 2018 Sep 24;9(1):3887 [PMID: 30250077]
  39. J Chem Phys. 2015 Jan 21;142(3):034501 [PMID: 25612714]
  40. J Chem Phys. 2020 May 21;152(19):194103 [PMID: 33687235]
  41. Nature. 2013 Jan 17;493(7432):365-70 [PMID: 23254929]
  42. J Chem Theory Comput. 2015 May 12;11(5):2087-96 [PMID: 26574412]

Word Cloud

Created with Highcharts 10.0.0potentialselectroderedoxstandardhydrogenpotentialhybridfunctionalthermodynamiccalculationslearningConstructingself-consistentfirst-principlesframeworkaccuratelypredictspropertieselectrontransferreactionsfinite-temperaturemoleculardynamicssimulationsdreamtheoreticalelectrochemistsphysicalchemistsYetpredictingevenabsolutefundamentalreferenceprovesextremelychallengingshowincorporating25%exactexchangeenablesquantitativepredictionsstatisticallyaccuratephase-spacesamplingachievedintegrationsperturbationtheoryutilizingmachine-learnedforcefieldsΔ-machinemodelsapplicationsevencouplesincludingmoleculestransitionmetalionsdemonstratescanpredictacrosswiderangeaverageerror140mVAbsoluteatomsmolecules:machineaidedfirstprinciples

Similar Articles

Cited By