Comparison of Brain Activation Between Different Modes of Motor Acquisition: A Functional Near-Infrared Study.

Meng-Hsuan Tsou, Pei-Yun Chen, Yi-Ting Hung, Yong-Wei Lim, Shiuan-Ling Huang, Yan-Ci Liu
Author Information
  1. Meng-Hsuan Tsou: School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
  2. Pei-Yun Chen: Taipei First Girls High School, Taipei, Taiwan.
  3. Yi-Ting Hung: School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
  4. Yong-Wei Lim: School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
  5. Shiuan-Ling Huang: School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
  6. Yan-Ci Liu: School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan. ORCID

Abstract

BACKGROUND: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.
PURPOSE: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.
METHODS: This cross-sectional study recruited 29 healthy young adults. Participants performed a functional reaching and grasping task under ME, MI, AO, and MVF mode with their right arms at a frequency of 0.5 Hz for 1 min per task. Each task was performed three times in a random order. Brain activation in the supplementary motor area (SMA), premotor cortices (PMC), and primary motor cortices (M1) during tasks was measured using functional near-infrared spectroscopy through 16 source-detector channels.
RESULTS: ME showed significant activation in bilateral PMC, M1, and right SMA, with higher activation in the contralateral M1. MI induced greater activity in the PMC and SMA, particularly in the ipsilateral regions. MVF resulted in significant activation in bilateral PMC, SMA, and M1. AO showed an increasing trend in brain activation, but no significant differences in any channels. Compared to AO, ME and MVF induced significantly greater brain activity in M1.
CONCLUSION: Activation levels under MI and MVF were comparable to that of ME. MI and MVF induced greater activity in the PMC and SMA, and MVF showed significant activity in all brain areas, especially in the bilateral M1. These findings support the application of different motor acquisition strategies according to individual needs. When ME cannot be executed, such as for individuals with hemiparesis or severe impairments of both upper extremities, MI and MVF may be applied, respectively, to drive neuroplastic changes.

Keywords

References

  1. J Appl Physiol (1985). 2001 May;90(5):1657-62 [PMID: 11299252]
  2. Neurosci Biobehav Rev. 2018 Nov;94:31-44 [PMID: 30098990]
  3. Front Hum Neurosci. 2021 Apr 15;15:603069 [PMID: 33935666]
  4. Neuroimage. 2015 Jun;113:101-10 [PMID: 25800212]
  5. Sci Rep. 2019 Apr 17;9(1):6226 [PMID: 30996244]
  6. Neurorehabil Neural Repair. 2009 Oct;23(8):792-9 [PMID: 19465507]
  7. Neural Plast. 2018 Apr 24;2018:2321045 [PMID: 29853839]
  8. IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2416-2423 [PMID: 30371378]
  9. Parkinsonism Relat Disord. 2016 Jan;22 Suppl 1:S60-4 [PMID: 26360239]
  10. Neurophysiol Clin. 2009 Dec;39(6):303-12 [PMID: 19962659]
  11. Neurosci Lett. 1997 Dec 19;239(2-3):65-8 [PMID: 9469657]
  12. PLoS One. 2015 Jun 16;10(6):e0129390 [PMID: 26079605]
  13. Neurosci Lett. 2005 Apr 22;378(3):156-9 [PMID: 15781150]
  14. Cereb Cortex. 2009 Feb;19(2):315-26 [PMID: 18515297]
  15. Front Behav Neurosci. 2015 Sep 11;9:234 [PMID: 26441568]
  16. Brain Topogr. 2006 Winter;19(1-2):77-88 [PMID: 17136468]
  17. Med Biol Eng Comput. 1988 May;26(3):289-94 [PMID: 2855531]
  18. Front Behav Neurosci. 2018 Nov 22;12:283 [PMID: 30524253]
  19. J Pharm Biomed Anal. 2016 Feb 20;120:333-41 [PMID: 26771132]
  20. Rheumatology (Oxford). 2003 Jan;42(1):97-101 [PMID: 12509620]
  21. Neuroimage. 2010 Apr 15;50(3):1148-67 [PMID: 20056149]
  22. Hum Brain Mapp. 2001 Jan;12(1):1-19 [PMID: 11198101]
  23. Aging Dis. 2017 May 2;8(3):364-371 [PMID: 28580191]
  24. Comput Intell Neurosci. 2017;2017:5491296 [PMID: 28546809]
  25. Lancet. 1999 Jun 12;353(9169):2035-6 [PMID: 10376620]
  26. Trends Neurosci. 1997 Feb;20(2):54-7 [PMID: 9023871]
  27. Neuroimage. 2011 Feb 14;54(4):2922-36 [PMID: 21029781]
  28. Proc Biol Sci. 1996 Apr 22;263(1369):377-86 [PMID: 8637922]
  29. Trends Neurosci. 2016 Aug;39(8):512-526 [PMID: 27378546]
  30. Front Hum Neurosci. 2022 Jan 26;15:798870 [PMID: 35153703]
  31. Cochrane Database Syst Rev. 2018 Jul 11;7:CD008449 [PMID: 29993119]
  32. Clin Neurophysiol. 2001 Apr;112(4):713-9 [PMID: 11275545]
  33. Front Hum Neurosci. 2013 Jun 13;7:280 [PMID: 23781196]
  34. Front Hum Neurosci. 2021 Feb 18;15:627983 [PMID: 33679349]
  35. Neuroimage. 2007 Feb 15;34(4):1416-27 [PMID: 17196832]
  36. Front Hum Neurosci. 2017 Feb 06;11:54 [PMID: 28220070]
  37. Neuroimage. 2001 Jul;14(1 Pt 2):S103-9 [PMID: 11373140]
  38. Neurosci Biobehav Rev. 2013 Jun;37(5):930-49 [PMID: 23583615]
  39. J Neurophysiol. 1991 Jun;65(6):1392-401 [PMID: 1875248]
  40. Front Neurosci. 2022 Feb 04;16:807045 [PMID: 35185457]
  41. Brain Res. 1994 Aug 1;652(2):257-62 [PMID: 7953738]
  42. IEEE Trans Neural Syst Rehabil Eng. 2018 Sep;26(9):1897-1905 [PMID: 30106735]
  43. Nat Rev Neurol. 2013 Dec;9(12):698-707 [PMID: 24217509]
  44. J Neurophysiol. 2010 Jul;104(1):128-40 [PMID: 20445039]
  45. Disabil Rehabil. 2002 Jul 10;24(10):534-41 [PMID: 12171643]
  46. PLoS One. 2021 Aug 13;16(8):e0253788 [PMID: 34388157]
  47. Neuroimage. 2014 Jan 15;85 Pt 1:64-71 [PMID: 23810973]
  48. J Neurophysiol. 2003 Feb;89(2):989-1002 [PMID: 12574475]
  49. J Neural Transm (Vienna). 2007;114(10):1265-78 [PMID: 17579805]
  50. Sci Rep. 2023 Mar 29;13(1):5151 [PMID: 36991003]
  51. Neuroimage. 2007 Jan 15;34(2):702-13 [PMID: 17112742]
  52. Brain. 2009 Jul;132(Pt 7):1693-710 [PMID: 19506071]
  53. PLoS One. 2019 Aug 30;14(8):e0221166 [PMID: 31469840]
  54. Neuroimage. 2001 Jan;13(1):76-90 [PMID: 11133311]
  55. Neuroimage. 2008 Apr 1;40(2):828-837 [PMID: 18234512]
  56. Neuroimage. 2002 Oct;17(2):559-72 [PMID: 12377134]
  57. Phys Med Biol. 2006 Mar 7;51(5):N91-8 [PMID: 16481677]
  58. Trends Neurosci. 2019 Nov;42(11):825-839 [PMID: 31514976]
  59. Prog Brain Res. 2017;234:189-204 [PMID: 29031463]
  60. J Neurol Phys Ther. 2022 Oct 1;46(4):260-269 [PMID: 35404916]
  61. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6345-8 [PMID: 24111192]

MeSH Term

Humans
Male
Spectroscopy, Near-Infrared
Female
Young Adult
Cross-Sectional Studies
Motor Cortex
Adult
Imagination
Feedback, Sensory
Psychomotor Performance
Motor Activity
Learning
Hand Strength
Brain

Word Cloud

Created with Highcharts 10.0.0motorMVFMEMIactivationM1SMAPMCAObrainsignificantactivityacquisitionfunctionaltaskshowedbilateralinducedgreaterDifferentmodesexecutionimageryactionobservationmirrorvisualfeedbackstudydifferencesdifferenthealthyyoungadultsperformedrightBraincorticesspectroscopychannelsActivationBACKGROUND:includingoftenusedlearningnewbehaviorclinicalrehabilitationPURPOSE:aiminvestigateamongMETHODS:cross-sectionalrecruited29Participantsreachinggraspingmodearmsfrequency05 Hz1 minperthreetimesrandomordersupplementaryareapremotorprimarytasksmeasuredusingnear-infrared16source-detectorRESULTS:highercontralateralparticularlyipsilateralregionsresultedincreasingtrendComparedsignificantlyCONCLUSION:levelscomparableareasespeciallyfindingssupportapplicationstrategiesaccordingindividualneedsexecutedindividualshemiparesissevereimpairmentsupperextremitiesmayappliedrespectivelydriveneuroplasticchangesComparisonModesMotorAcquisition:FunctionalNear-InfraredStudynear���infrared

Similar Articles

Cited By

No available data.