DJK-5, an anti-biofilm peptide, increases Staphylococcus aureus sensitivity to colistin killing in co-biofilms with Pseudomonas aeruginosa.

Samuel J T Wardell, Deborah B Y Yung, Anupriya Gupta, Mihnea Bostina, Joerg Overhage, Robert E W Hancock, Daniel Pletzer
Author Information
  1. Samuel J T Wardell: Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
  2. Deborah B Y Yung: Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. ORCID
  3. Anupriya Gupta: Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
  4. Mihnea Bostina: Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. ORCID
  5. Joerg Overhage: Department of Health Sciences, Carleton University, Ottawa, ON, Canada.
  6. Robert E W Hancock: Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada. ORCID
  7. Daniel Pletzer: Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. daniel.pletzer@otago.ac.nz. ORCID

Abstract

Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections. Within biofilms, bacteria demonstrate a remarkable increase in resistance and tolerance to antimicrobial treatment. We investigated the efficacy of combining the last-line antibiotic colistin with a membrane- and stringent stress response-targeting anti-biofilm peptide DJK-5 against co-biofilms comprised of multidrug-resistant P. aeruginosa and methicillin-resistant S. aureus (MRSA). Colistin lacks canonical activity against S. aureus. However, our study revealed that under co-biofilm conditions, the antibiofilm peptide DJK-5 synergized with colistin against S. aureus. Similar enhancement was observed when daptomycin, a cyclic lipopeptide against Gram-positive bacteria, was combined with DJK-5, resulting in increased activity against P. aeruginosa. The combinatorial treatment induced morphological changes in both P. aeruginosa and S. aureus cell shape and size within co-biofilms. Importantly, our findings also demonstrate synergistic activity against both P. aeruginosa and S. aureus in a murine subcutaneous biofilm-like abscess model. In conclusion, combinatorial treatments with colistin or daptomycin and the anti-biofilm peptide DJK-5 show significant potential for targeting co-biofilm infections. These findings offer promising avenues for developing new therapeutic approaches to combat complex chronic infections.

References

  1. Front Immunol. 2018 Oct 22;9:2416 [PMID: 30405616]
  2. mBio. 2017 Jul 18;8(4): [PMID: 28720732]
  3. Crit Rev Microbiol. 2019 Sep - Nov;45(5-6):712-728 [PMID: 31835971]
  4. Antibiotics (Basel). 2022 Dec 01;11(12): [PMID: 36551388]
  5. MMWR Morb Mortal Wkly Rep. 2003 Feb 7;52(5):88 [PMID: 12588006]
  6. Sci Rep. 2023 Dec 14;13(1):22262 [PMID: 38097636]
  7. EBioMedicine. 2017 Jun;20:173-181 [PMID: 28579300]
  8. Nat Commun. 2020 Mar 19;11(1):1455 [PMID: 32193379]
  9. FEMS Microbiol Ecol. 2018 May 1;94(5): [PMID: 29659817]
  10. Free Radic Biol Med. 2020 Dec;161:351-364 [PMID: 33144262]
  11. Infect Immun. 2014 Nov;82(11):4718-28 [PMID: 25156721]
  12. ACS Infect Dis. 2022 Mar 11;8(3):533-545 [PMID: 35175731]
  13. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  14. Antimicrob Agents Chemother. 2020 Mar 24;64(4): [PMID: 32041713]
  15. PLoS Pathog. 2015 Dec 31;11(12):e1005258 [PMID: 26719892]
  16. PLoS One. 2013;8(3):e58277 [PMID: 23472168]
  17. J Vis Exp. 2024 Apr 19;(206): [PMID: 38709077]
  18. Methods Mol Biol. 2021;2341:37-44 [PMID: 34264459]
  19. Future Microbiol. 2021 Sep;16:1087-1104 [PMID: 34384254]
  20. Front Microbiol. 2021 Feb 04;11:622534 [PMID: 33613470]
  21. J Chin Med Assoc. 2018 Jan;81(1):7-11 [PMID: 29042186]
  22. Biopolymers. 2019 Apr;110(4):e23256 [PMID: 30633339]
  23. PLoS Pathog. 2018 Jun 21;14(6):e1007084 [PMID: 29928049]
  24. Bioorg Med Chem. 2016 Dec 15;24(24):6253-6268 [PMID: 27288182]
  25. J Innate Immun. 2019;11(3):193-204 [PMID: 30134244]
  26. Microorganisms. 2020 Nov 02;8(11): [PMID: 33147701]
  27. Antimicrob Agents Chemother. 2000 Dec;44(12):3317-21 [PMID: 11083634]
  28. Trends Microbiol. 2013 Apr;21(4):174-80 [PMID: 23419217]
  29. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jun 15;217:155-163 [PMID: 30933779]
  30. Adv Wound Care (New Rochelle). 2021 May;10(5):281-292 [PMID: 33733885]
  31. NPJ Biofilms Microbiomes. 2023 Jun 8;9(1):36 [PMID: 37291132]
  32. Expert Rev Anti Infect Ther. 2018 Jan;16(1):51-65 [PMID: 29235402]
  33. Mol Microbiol. 2021 Jul;116(1):1-15 [PMID: 33576132]
  34. Emerg Microbes Infect. 2020 Dec;9(1):868-885 [PMID: 32284036]
  35. mBio. 2019 Jul 30;10(4): [PMID: 31363032]
  36. Molecules. 2019 Jan 22;24(3): [PMID: 30678237]
  37. Lancet Infect Dis. 2005 Apr;5(4):209-18 [PMID: 15792738]
  38. J Antimicrob Chemother. 2003 Jul;52(1):1 [PMID: 12805255]
  39. NPJ Biofilms Microbiomes. 2021 Jan 25;7(1):8 [PMID: 33495449]
  40. NPJ Biofilms Microbiomes. 2017 Oct 19;3:25 [PMID: 29062489]
  41. Front Cell Infect Microbiol. 2017 Apr 18;7:125 [PMID: 28459043]
  42. mBio. 2016 May 24;7(3): [PMID: 27222468]
  43. mSphere. 2024 Oct 29;9(10):e0068624 [PMID: 39365057]
  44. PLoS One. 2015 Aug 07;10(8):e0135198 [PMID: 26252512]
  45. Iran J Basic Med Sci. 2019 Jan;22(1):38-42 [PMID: 30944706]
  46. Antibiotics (Basel). 2023 Feb 28;12(3): [PMID: 36978351]
  47. Appl Microbiol Biotechnol. 2024 May 3;108(1):316 [PMID: 38700735]
  48. Front Microbiol. 2017 Sep 27;8:1867 [PMID: 29021784]
  49. Trends Microbiol. 2016 May;24(5):327-337 [PMID: 26946977]
  50. Lancet. 1996 Sep 7;348(9028):639-42 [PMID: 8782753]
  51. Appl Environ Microbiol. 2016 Dec 1;82(23):6859-6869 [PMID: 27637878]
  52. Front Microbiol. 2018 Nov 20;9:2805 [PMID: 30515145]
  53. J Mol Biol. 2016 Aug 28;428(17):3355-71 [PMID: 27170548]
  54. J Antimicrob Chemother. 2018 Jan 1;73(1):1-11 [PMID: 29059358]
  55. EBioMedicine. 2016 Oct;12:219-226 [PMID: 27658736]
  56. J Phys Chem B. 2014 Jan 30;118(4):921-30 [PMID: 24393011]
  57. Emerg Infect Dis. 2002 Sep;8(9):881-90 [PMID: 12194761]
  58. Microorganisms. 2021 Sep 03;9(9): [PMID: 34576767]
  59. J Bacteriol. 2017 Feb 14;199(5): [PMID: 28031278]
  60. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33519-33529 [PMID: 33318204]
  61. Infect Drug Resist. 2016 Apr 15;9:47-58 [PMID: 27143941]
  62. Drug Discov Today. 2021 May;26(5):1302-1310 [PMID: 33581321]
  63. Folia Microbiol (Praha). 2023 Aug;68(4):495-505 [PMID: 37310652]
  64. Chem Biol. 2015 Feb 19;22(2):196-205 [PMID: 25699603]
  65. Clujul Med. 2016;89(3):365-70 [PMID: 27547055]
  66. Clin Microbiol Rev. 2012 Jan;25(1):193-213 [PMID: 22232376]
  67. Curr Opin Microbiol. 2018 Apr;42:19-24 [PMID: 28988156]
  68. Antibiotics (Basel). 2023 Feb 15;12(2): [PMID: 36830299]
  69. BMC Microbiol. 2021 Nov 20;21(1):321 [PMID: 34798825]
  70. PLoS One. 2017 Mar 29;12(3):e0174654 [PMID: 28355248]
  71. BMC Infect Dis. 2014 Jul 14;14:390 [PMID: 25022748]
  72. Sci Rep. 2019 Nov 12;9(1):16564 [PMID: 31719577]
  73. Am J Respir Crit Care Med. 2012 Jan 15;185(2):171-8 [PMID: 22095545]
  74. BMC Oral Health. 2023 Sep 30;23(1):705 [PMID: 37777729]
  75. Front Microbiol. 2020 Sep 18;11:575882 [PMID: 33072039]
  76. Adv Exp Med Biol. 2019;1145:181-195 [PMID: 31364079]
  77. J Antimicrob Chemother. 2018 Dec 1;73(12):3385-3390 [PMID: 30215733]
  78. Sci Rep. 2021 Jan 14;11(1):1267 [PMID: 33446738]
  79. Microbiol Spectr. 2023 Feb 21;:e0427522 [PMID: 36802038]
  80. J Cyst Fibros. 2019 May;18(3):357-363 [PMID: 30131297]
  81. mBio. 2017 Feb 28;8(1): [PMID: 28246361]
  82. J Bacteriol. 2015 Jul;197(14):2252-64 [PMID: 25917910]
  83. Access Microbiol. 2021 Jan 7;3(2):000193 [PMID: 34151146]
  84. PLoS Pathog. 2020 Mar 24;16(3):e1008444 [PMID: 32208458]
  85. Colloids Surf B Biointerfaces. 2021 Jun;202:111697 [PMID: 33756295]

MeSH Term

Biofilms
Colistin
Pseudomonas aeruginosa
Animals
Anti-Bacterial Agents
Drug Synergism
Mice
Staphylococcus aureus
Staphylococcal Infections
Microbial Sensitivity Tests
Methicillin-Resistant Staphylococcus aureus
Humans
Pseudomonas Infections
Daptomycin
Disease Models, Animal
Oligopeptides

Chemicals

Colistin
Anti-Bacterial Agents
DJK-5 peptide
Daptomycin
Oligopeptides

Word Cloud

Created with Highcharts 10.0.0aureusaeruginosainfectionsDJK-5ScolistinpeptidePanti-biofilmco-biofilmsactivitysignificantPseudomonasStaphylococcuschronicbacteriademonstratetreatmentco-biofilmdaptomycincombinatorialfindingsChronicrepresentglobalhealtheconomicchallengeBiofilmsbacterialcommunitiesencasedextracellularpolysaccharidematrixcontributeapproximately80%particularpathogensfrequentlyco-isolatedsputumpatientscysticfibrosiscommonlyfoundwoundWithinbiofilmsremarkableincreaseresistancetoleranceantimicrobialinvestigatedefficacycombininglast-lineantibioticmembrane-stringentstressresponse-targetingcomprisedmultidrug-resistantmethicillin-resistantMRSAColistinlackscanonicalHoweverstudyrevealedconditionsantibiofilmsynergizedSimilarenhancementobservedcycliclipopeptideGram-positivecombinedresultingincreasedinducedmorphologicalchangescellshapesizewithinImportantlyalsosynergisticmurinesubcutaneousbiofilm-likeabscessmodelconclusiontreatmentsshowpotentialtargetingofferpromisingavenuesdevelopingnewtherapeuticapproachescombatcomplexincreasessensitivitykilling

Similar Articles

Cited By