Poplar transformation with variable explant sources to maximize transformation efficiency.

Haiwei Lu, Sara Jawdy, Jin-Gui Chen, Xiaohan Yang, Udaya C Kalluri
Author Information
  1. Haiwei Lu: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  2. Sara Jawdy: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  3. Jin-Gui Chen: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  4. Xiaohan Yang: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  5. Udaya C Kalluri: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. kalluriudayc@ornl.gov. ORCID

Abstract

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops. To maximize the utility of plant material and improve the transformation productivity per unit plant form, we studied the regeneration and transformation efficiency of different types of explants, including leaf, stem, petiole, and root from Populus, a woody perennial bioenergy crop. Our results show that root explants, in addition to the above-ground tissues, have considerable regeneration capacity and amenability to A. tumefaciens and, the resulting transformants have largely comparable morphology, reporter gene expression, and transcriptome profile, independent of the explant source tissue. Transcriptome analyses mapped to regeneration stages and transformation efficiencies further revealed the expression of the auxin and cytokinin signaling and various developmental pathway genes in leaf and root explants undergoing early organogenesis. We further report high-potential candidate genes that may potentially be associated with higher regeneration and transformation efficiency. Overall, our study shows that explants from above- and belowground organs of a Populus plant are suitable for genetic transformation and tissue culture regeneration, and together with the underlying transcriptome data open new routes to maximize plant explant utilization, stable transformation productivity, and plant transformation efficiency.

Keywords

References

  1. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  2. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  3. Plant Cell Rep. 2011 Nov;30(11):2037-44 [PMID: 21717184]
  4. Hortic Res. 2022 Mar 14;9:uhac047 [PMID: 35531314]
  5. Annu Rev Plant Biol. 2019 Apr 29;70:377-406 [PMID: 30786238]
  6. Front Plant Sci. 2022 May 09;13:888425 [PMID: 35615120]
  7. Front Plant Sci. 2018 Dec 05;9:1669 [PMID: 30568662]
  8. Nat Protoc. 2006;1(2):641-6 [PMID: 17406292]
  9. Nat Biotechnol. 2020 Nov;38(11):1274-1279 [PMID: 33046875]
  10. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  11. Sci Rep. 2019 Sep 18;9(1):13503 [PMID: 31534160]
  12. Plant Cell Rep. 1997 Dec;17(2):96-101 [PMID: 30732410]
  13. Plant J. 1998 Dec;16(6):735-43 [PMID: 10069079]
  14. New Phytol. 2005 Apr;166(1):39-48 [PMID: 15760349]
  15. Science. 1985 Mar 8;227(4691):1229-31 [PMID: 17757866]
  16. Plant Cell Rep. 2000 Jan;19(3):315-320 [PMID: 30754915]
  17. Plant Cell Rep. 2003 Feb;21(6):549-54 [PMID: 12789429]
  18. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15156-61 [PMID: 17827277]
  19. Nat Plants. 2022 Dec;8(12):1343-1351 [PMID: 36522447]
  20. Arabidopsis Book. 2017 Oct 20;15:e0186 [PMID: 31068763]
  21. Trends Plant Sci. 2015 May;20(5):309-317 [PMID: 25825364]
  22. Curr Opin Plant Biol. 2019 Feb;47:138-150 [PMID: 30703741]
  23. Plant Physiol. 2023 Sep 22;193(2):1297-1312 [PMID: 37394940]
  24. Biodes Res. 2020 May 26;2020:8189219 [PMID: 37849895]
  25. Plants (Basel). 2019 Feb 11;8(2): [PMID: 30754699]
  26. Plant Cell. 2016 Sep;28(9):1998-2015 [PMID: 27600536]
  27. J Plant Physiol. 2021 Nov;266:153527 [PMID: 34563791]
  28. Hortic Res. 2021 Nov 1;8(1):234 [PMID: 34719678]
  29. Plant Cell Rep. 2006 Jul;25(7):660-7 [PMID: 16496153]
  30. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 [PMID: 22110026]
  31. Curr Top Microbiol Immunol. 2018;418:287-317 [PMID: 29992359]
  32. Plant Biotechnol J. 2019 Feb;17(2):451-460 [PMID: 30044051]
  33. Front Plant Sci. 2019 Feb 12;10:114 [PMID: 30809237]
  34. Plant Sci. 2018 Aug;273:3-12 [PMID: 29907306]
  35. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11806-11 [PMID: 11573014]
  36. Cell. 1998 Jun 26;93(7):1195-205 [PMID: 9657152]
  37. Bioinformatics. 2019 Jun 1;35(11):1960-1962 [PMID: 30379987]
  38. Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents [PMID: 12626681]
  39. Curr Top Microbiol Immunol. 2018;418:319-348 [PMID: 30062593]
  40. BMC Plant Biol. 2009 Nov 17;9:132 [PMID: 19919717]
  41. J Plant Res. 2023 Nov;136(6):781-786 [PMID: 37642778]
  42. Front Plant Sci. 2018 Oct 02;9:1443 [PMID: 30333845]

MeSH Term

Populus
Transformation, Genetic
Agrobacterium tumefaciens
Plants, Genetically Modified
Plant Roots
Plant Leaves
Gene Expression Regulation, Plant
Regeneration

Word Cloud

Similar Articles

Cited By