Gallic acid alleviates exercise-induced muscle damage by inhibiting mitochondrial oxidative stress and ferroptosis.

Likai Yu, Di Tian, Zishan Su, Li Zhang, Shaobo Guo, Wenhui Zhu, Yuan Fang, Peimin Wang, Nongshan Zhang
Author Information
  1. Likai Yu: Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
  2. Di Tian: Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
  3. Zishan Su: Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
  4. Li Zhang: Orthopedics of Traditional Chinese Medicine, Zhongda Hospital Southeast University, Nanjing, Jiangsu, 210009, China.
  5. Shaobo Guo: Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
  6. Wenhui Zhu: Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
  7. Yuan Fang: Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
  8. Peimin Wang: Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
  9. Nongshan Zhang: Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China. zns0032@163.com. ORCID

Abstract

BACKGROUND: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities. However, its function and mechanism in skeletal muscle injury remain unclear.
METHODS: We first established a skeletal muscle injury model caused by excessive exercise. Histopathological analysis was used to determine the severity of skeletal muscle injury in mice. Techniques such as ELISA, Western blot, and RT-qPCR were used to measure skeletal muscle injury markers including CK, LDH, IL-6, TNF-α, and ferroptosis-related indicators such as Fe, MDA, COX2, and GPX4. Transmission electron microscopy was used to observe the morphology of mitochondria. JC-1, DHE, and C11-BODIPY 581/591 probes were used to detect mitochondrial membrane potential, mitochondrial reactive oxygen species (mtROS), and lipid peroxidation levels.
RESULTS: The results of this study indicate that GA has a positive therapeutic effect on skeletal muscle inflammation and injury induced by excessive exercise. On the one hand, GA can alleviate skeletal muscle mitochondrial injury and redox imbalance by reducing mitochondrial membrane potential level and increasing ATP production. On the other hand, GA can inhibit ferroptosis in skeletal muscle cells induced by excessive exercise through its antioxidant and anti-iron accumulation ability.
CONCLUSIONS: In summary, GA protects against skeletal muscle injury induced by excessive exercise by inhibiting mitochondrial oxidative stress and ferroptosis pathways, providing new evidence for GA as a promising therapeutic agent for skeletal muscle injury.

Keywords

References

  1. J Gerontol A Biol Sci Med Sci. 2023 Jan 26;78(1):16-24 [PMID: 35869751]
  2. iScience. 2024 Mar 29;27(5):109643 [PMID: 38650987]
  3. Free Radic Biol Med. 2022 Feb 20;180:95-107 [PMID: 35045311]
  4. J Appl Physiol (1985). 2004 Oct;97(4):1424-30 [PMID: 15358753]
  5. Biochem Pharmacol. 2024 Apr;222:116050 [PMID: 38354960]
  6. Front Mol Biosci. 2022 Nov 03;9:1051866 [PMID: 36406272]
  7. Biogerontology. 2023 Oct;24(5):753-769 [PMID: 37289374]
  8. ACS Cent Sci. 2021 Jun 23;7(6):980-989 [PMID: 34235259]
  9. Naunyn Schmiedebergs Arch Pharmacol. 2024 Apr;397(4):2437-2445 [PMID: 37847411]
  10. J Cachexia Sarcopenia Muscle. 2021 Jun;12(3):746-768 [PMID: 33955709]
  11. Sci Rep. 2017 May 16;7(1):1977 [PMID: 28512292]
  12. Nat Commun. 2021 Mar 11;12(1):1589 [PMID: 33707434]
  13. J Sport Health Sci. 2020 Sep;9(5):415-425 [PMID: 32380253]
  14. Annu Rev Biochem. 2021 Jun 20;90:507-534 [PMID: 34153212]
  15. FASEB J. 2019 Aug;33(8):8961-8975 [PMID: 31034781]
  16. Curr Biol. 2014 May 19;24(10):R453-62 [PMID: 24845678]
  17. Curr Opin Cell Biol. 2018 Apr;51:58-64 [PMID: 29175614]
  18. Int J Mol Sci. 2024 Oct 21;25(20): [PMID: 39457099]
  19. Int J Mol Sci. 2019 Oct 08;20(19): [PMID: 31597407]
  20. Front Endocrinol (Lausanne). 2022 Aug 26;13:915937 [PMID: 36093084]
  21. Oncogene. 2023 Jan;42(2):83-98 [PMID: 36369321]
  22. Sci Rep. 2024 Jul 8;14(1):15696 [PMID: 38977909]
  23. Sci Rep. 2024 Jul 3;14(1):15299 [PMID: 38961243]
  24. Mol Nutr Food Res. 2018 Jan;62(1): [PMID: 29178387]
  25. Mol Neurobiol. 2024 Oct;61(10):7767-7784 [PMID: 38430353]
  26. Cureus. 2023 Sep 30;15(9):e46267 [PMID: 37908915]
  27. Trends Pharmacol Sci. 2013 Jun;34(6):313-9 [PMID: 23608227]
  28. Exp Ther Med. 2016 Feb;11(2):619-624 [PMID: 26893656]
  29. BMC Complement Med Ther. 2023 Jul 25;23(1):265 [PMID: 37491245]
  30. Cell Death Differ. 2022 Oct;29(10):1982-1995 [PMID: 35383293]
  31. ACS Chem Neurosci. 2023 Feb 15;14(4):667-676 [PMID: 36719132]
  32. Front Immunol. 2020 Dec 07;11:580593 [PMID: 33365024]
  33. Front Endocrinol (Lausanne). 2022 Aug 31;13:995499 [PMID: 36120469]
  34. Am J Cardiovasc Pathol. 1990;3(3):259-63 [PMID: 2095832]
  35. J Inflamm Res. 2016 Oct 21;9:175-186 [PMID: 27799809]
  36. Front Pharmacol. 2022 Jun 24;13:913367 [PMID: 35814232]
  37. Int J Exp Pathol. 2001 Feb;82(1):55-64 [PMID: 11422541]
  38. Iran J Basic Med Sci. 2021 Feb;24(2):240-247 [PMID: 33953864]
  39. Cell Death Differ. 2016 Jun;23(6):927-37 [PMID: 26868912]
  40. Nat Commun. 2023 Jul 24;14(1):4456 [PMID: 37488119]
  41. Free Radic Biol Med. 2018 May 20;120:317-329 [PMID: 29625173]
  42. Autophagy. 2021 Apr;17(4):948-960 [PMID: 32186434]
  43. Cell. 2012 May 25;149(5):1060-72 [PMID: 22632970]
  44. Dis Mon. 1988 Nov;34(11):677-735 [PMID: 3056676]
  45. Int J Cancer. 2020 Jan 15;146(2):510-520 [PMID: 31173656]

Grants

  1. Y2023zx05/Clinical Medicine Innovation Center of Jiangsu Provincial Hospital of Traditional Chinese Medicine
  2. Y2022ZR26/Special Fund for Academic Promotion of Department Directors of Jiangsu Provincial Hospital of Traditional Chinese Medicine

MeSH Term

Gallic Acid
Ferroptosis
Animals
Oxidative Stress
Muscle, Skeletal
Physical Conditioning, Animal
Mitochondria
Male
Membrane Potential, Mitochondrial
Mice
Mice, Inbred C57BL
Lipid Peroxidation
Reactive Oxygen Species
Inflammation

Chemicals

Gallic Acid
Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0muscleinjuryskeletalexerciseGAmitochondrialexcessiveusedGallicacidinducedferroptosisoxidativestressSkeletalcausedoneantioxidantmembranepotentialtherapeutichandcaninhibitingBACKGROUND:commonlyseenclinicaldiseasesindispensableexploredrugstreatingrelievingpolyphenolicextractanti-inflammatorybiologicalactivitiesHoweverfunctionmechanismremainunclearMETHODS:firstestablishedmodelHistopathologicalanalysisdetermineseveritymiceTechniquesELISAWesternblotRT-qPCRmeasuremarkersincludingCKLDHIL-6TNF-αferroptosis-relatedindicatorsFeMDACOX2GPX4TransmissionelectronmicroscopyobservemorphologymitochondriaJC-1DHEC11-BODIPY581/591probesdetectreactiveoxygenspeciesmtROSlipidperoxidationlevelsRESULTS:resultsstudyindicatepositiveeffectinflammationalleviateredoximbalancereducinglevelincreasingATPproductioninhibitcellsanti-ironaccumulationabilityCONCLUSIONS:summaryprotectspathwaysprovidingnewevidencepromisingagentalleviatesexercise-induceddamageExcessiveFerroptosisMitochondrial

Similar Articles

Cited By