Patterns of paternity: insights into mating competition and gene flow in a recovering population of humpback whales.

Franca Eichenberger, Emma L Carroll, Claire Garrigue, Debbie J Steel, Claire D Bonneville, Luke Rendell, Ellen C Garland
Author Information
  1. Franca Eichenberger: Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK. ORCID
  2. Emma L Carroll: School of Biological Sciences, University of Auckland - Waipapa Taumata Rau, Auckland, New Zealand. ORCID
  3. Claire Garrigue: UMR ENTROPIE (IRD, Universit�� de La R��union, Universit�� de la Nouvelle-Cal��donie, IFREMER, CNRS, Laboratoire d'Exellence - CORAIL), Noum��a 98848, New Caledonia. ORCID
  4. Debbie J Steel: Marine Mammal Institute, Oregon State University, Newport, OR 97365, USA. ORCID
  5. Claire D Bonneville: UMR ENTROPIE (IRD, Universit�� de La R��union, Universit�� de la Nouvelle-Cal��donie, IFREMER, CNRS, Laboratoire d'Exellence - CORAIL), Noum��a 98848, New Caledonia. ORCID
  6. Luke Rendell: Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK. ORCID
  7. Ellen C Garland: Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK. ORCID

Abstract

Variation in reproductive success is a fundamental prerequisite for sexual selection to act upon a trait. Assessing such variation is crucial in understanding a species' mating system and offers insights into population growth. Parentage analyses in cetaceans are rare, and the underlying forces of sexual selection acting on their mating behaviours remain poorly understood. Here, we combined 25 years of photo-identification and genetic data to assess patterns of male reproductive success and reproductive autonomy of the New Caledonian (Oceania, South Pacific) humpback whale breeding population. Paternity analysis of 177 mother-offspring pairs and 936 males revealed low variation in male reproductive success (average 1.17 offspring per father) relative to other polygynous species. The observed skew in success was higher than expected under random mating and skewed overall towards males (93%) without evidence of paternity over the study period. Finally, an updated male gametic mark-recapture abundance estimate of 2084 (95% confidence interval = 1761-2407, 1995-2019) fell between previous census estimates of the New Caledonian population and the wider Oceanian metapopulation. Our results provide critical insights into the mating competition of male humpback whales and population dynamics across Oceanian populations, two important factors affecting the slow recovery from whaling across the South Pacific region.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.7577721

References

  1. Nature. 1991 Nov 7;354(6348):63-5 [PMID: 1944571]
  2. Evolution. 1989 Mar;43(2):258-275 [PMID: 28568555]
  3. Mol Ecol. 2004 Jul;13(7):1975-90 [PMID: 15189218]
  4. Mol Ecol. 2007 Dec;16(24):5277-93 [PMID: 17971086]
  5. Mol Ecol. 2006 Sep;15(10):3023-34 [PMID: 16911218]
  6. Genetics. 2001 Apr;157(4):1673-82 [PMID: 11290722]
  7. Proc Biol Sci. 2018 Nov 21;285(1891): [PMID: 30464066]
  8. Genetics. 2014 Jun;197(2):769-80 [PMID: 24717176]
  9. Mol Ecol. 2007 Mar;16(5):1099-106 [PMID: 17305863]
  10. Mol Ecol. 2000 Dec;9(12):2181-3 [PMID: 11123643]
  11. Ecol Appl. 2013 Oct;23(7):1677-90 [PMID: 24261048]
  12. Trends Ecol Evol. 2004 Jul;19(7):365-71 [PMID: 16701287]
  13. Proc Biol Sci. 1997 Jan 22;264(1378):95-8 [PMID: 9061965]
  14. Nature. 1990 Mar 15;344(6263):238-40 [PMID: 1969116]
  15. Bioinformatics. 2012 Oct 1;28(19):2537-9 [PMID: 22820204]
  16. Genetics. 2009 Apr;181(4):1579-94 [PMID: 19221199]
  17. J Anim Ecol. 2020 Jan;89(1):57-67 [PMID: 31236936]
  18. Science. 2022 Jan 21;375(6578):eabi6308 [PMID: 35050648]
  19. J Hered. 2011 Sep-Oct;102(5):537-53 [PMID: 21757487]
  20. Mol Ecol. 1999 Oct;8(10):1763-5 [PMID: 10583845]
  21. Trends Ecol Evol. 2007 Jan;22(1):11-6 [PMID: 16982114]
  22. Mol Ecol. 2001 Nov;10(11):2711-8 [PMID: 11883884]
  23. Mol Ecol Resour. 2008 Jan;8(1):103-6 [PMID: 21585727]
  24. Mol Ecol. 2001 Jan;10(1):249-56 [PMID: 11251803]
  25. Evolution. 2014 Jun;68(6):1722-34 [PMID: 24611912]
  26. Mol Ecol Resour. 2014 Sep;14(5):976-87 [PMID: 24606053]
  27. Biol Rev Camb Philos Soc. 2017 Aug;92(3):1795-1818 [PMID: 28677337]
  28. PLoS One. 2016 Oct 13;11(10):e0164596 [PMID: 27736958]
  29. Biotechnology (N Y). 1990 Dec;8(12):1279-81 [PMID: 1369448]
  30. Philos Trans R Soc Lond B Biol Sci. 2021 Oct 25;376(1836):20200242 [PMID: 34482732]
  31. PLoS One. 2013 Nov 20;8(11):e79422 [PMID: 24278134]
  32. Proc Biol Sci. 2022 Apr 13;289(1972):20220075 [PMID: 35414243]
  33. Biol Rev Camb Philos Soc. 2005 May;80(2):205-25 [PMID: 15921049]
  34. Science. 1977 Jul 15;197(4300):215-23 [PMID: 327542]
  35. Evolution. 2003 Aug;57(8):1917-30 [PMID: 14503632]
  36. Mol Ecol. 2009 Jul;18(13):2746-65 [PMID: 19500255]
  37. Mol Ecol. 1998 May;7(5):627-38 [PMID: 9633104]
  38. Evolution. 2005 Jul;59(7):1596-9 [PMID: 16153045]
  39. J Hered. 2018 Oct 31;109(7):780-790 [PMID: 30272235]
  40. Sci Rep. 2020 Mar 17;10(1):4871 [PMID: 32184421]
  41. Behav Ecol. 2014 Jul;25(4):878-889 [PMID: 25024637]
  42. PLoS One. 2018 Dec 19;13(12):e0207524 [PMID: 30566480]
  43. Mol Ecol Resour. 2010 May;10(3):551-5 [PMID: 21565056]
  44. Theor Popul Biol. 2006 Nov;70(3):300-21 [PMID: 16388833]
  45. Curr Biol. 2011 Apr 26;21(8):687-91 [PMID: 21497089]
  46. Mol Ecol Resour. 2010 Jan;10(1):6-30 [PMID: 21564987]
  47. PeerJ. 2018 Dec 06;6:e5957 [PMID: 30564513]
  48. Mol Ecol. 1996 Feb;5(1):151-6 [PMID: 9147690]
  49. Mol Ecol. 1997 Sep;6(9):893-5 [PMID: 9301078]
  50. J Acoust Soc Am. 2013 Jan;133(1):560-9 [PMID: 23297927]
  51. Mol Ecol. 1995 Jun;4(3):347-54 [PMID: 7663752]
  52. Mol Ecol. 2012 Aug;21(16):3960-73 [PMID: 22726223]
  53. Mol Ecol. 1998 May;7(5):639-55 [PMID: 9633105]
  54. Mol Ecol. 2010 Jun 1;19(12):2574-86 [PMID: 20497325]
  55. Mol Ecol. 1994 Aug;3(4):313-27 [PMID: 7921358]

Word Cloud

Created with Highcharts 10.0.0populationreproductivesuccessmatingmalehumpbacksexualselectioninsightsvariationNewCaledonianSouthPacificwhaleanalysismalespaternitygameticmark-recaptureOceaniancompetitionwhalesacrossrecoveryVariationfundamentalprerequisiteactupontraitAssessingcrucialunderstandingspecies'systemoffersgrowthParentageanalysescetaceansrareunderlyingforcesactingbehavioursremainpoorlyunderstoodcombined25yearsphoto-identificationgeneticdataassesspatternsautonomyOceaniabreedingPaternity177mother-offspringpairs936revealedlowaverage117offspringperfatherrelativepolygynousspeciesobservedskewhigherexpectedrandomskewedoveralltowards93%withoutevidencestudyperiodFinallyupdatedabundanceestimate208495%confidenceinterval=1761-24071995-2019fellpreviouscensusestimateswidermetapopulationresultsprovidecriticaldynamicspopulationstwoimportantfactorsaffectingslowwhalingregionPatternspaternity:geneflowrecovering

Similar Articles

Cited By

No available data.