A robust multimodal brain MRI-based diagnostic model for migraine: validation across different migraine phases and longitudinal follow-up data.

Jong Young Namgung, Eunchan Noh, Yurim Jang, Mi Ji Lee, Bo-Yong Park
Author Information
  1. Jong Young Namgung: Department of Data Science, Inha University, Incheon, Republic of Korea.
  2. Eunchan Noh: College of Medicine, Inha University, Incheon, Republic of Korea.
  3. Yurim Jang: Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
  4. Mi Ji Lee: Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea. mijilee.md@snu.ac.kr.
  5. Bo-Yong Park: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea. boyongpark@korea.ac.kr.

Abstract

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting. We obtained T1-weighted and resting-state functional MRI data from 50 patients with episodic migraine and 50 age- and sex-matched healthy controls, with follow-up data collected after one year. Morphological features, including cortical thickness, curvature, and sulcal depth, and functional connectivity features, such as low-dimensional representation of functional connectivity (gradient), degree centrality, and betweenness centrality, were utilized. We employed a regularization-based feature selection method combined with a random forest classifier to construct a diagnostic model. By testing the models with varying feature combinations, penalty terms, and spatial granularities within a strict cross-validation framework, we found that the combination of curvature, sulcal depth, cortical thickness, and functional gradient achieved a robust classification performance. The model performance was assessed using the test dataset and achieved 87% accuracy and 0.94 area under the curve (AUC) at distinguishing migraine patients from healthy controls, with 85%, 0.97 and 84%, 0.93 during the interictal and ictal/peri-ictal phases, respectively. When validated using follow-up data, which was not included during model training, the model achieved 91%, 94%, 89% accuracies and 0.96, 0.94, 0.98 AUC for the total, interictal, and ictal/peri-ictal phases, respectively, confirming its robustness. Feature importance and clinical association analyses exhibited that the somatomotor, limbic, and default mode regions could be reliable markers of migraine. Our findings, which demonstrate a robust diagnostic performance using multimodal MRI features and a machine-learning framework, may offer a valuable approach for clinical diagnosis across diverse cohorts and help alleviate the decision-making burden for clinicians.

Keywords

References

  1. Headache. 2015 Jun;55(6):762-77 [PMID: 26084235]
  2. Front Neurol. 2019 Jun 06;10:606 [PMID: 31244765]
  3. J Neurosci. 2015 Apr 29;35(17):6619-29 [PMID: 25926442]
  4. Med Image Comput Comput Assist Interv. 2015 Oct;9350:313-320 [PMID: 26855977]
  5. Cephalalgia. 2019 Apr;39(5):665-673 [PMID: 30525946]
  6. J Headache Pain. 2023 Nov 6;24(1):148 [PMID: 37926825]
  7. Cephalalgia. 2006 Feb;26(2):214-20 [PMID: 16426278]
  8. Cephalalgia. 2013 Jul;33(9):629-808 [PMID: 23771276]
  9. J Headache Pain. 2017 Dec 8;18(1):115 [PMID: 29322264]
  10. Cephalalgia. 2015 Jun;35(7):585-92 [PMID: 25187033]
  11. Cephalalgia. 2023 Feb;43(2):3331024221128278 [PMID: 36751858]
  12. Stroke. 2006 Jul;37(7):1765-70 [PMID: 16728687]
  13. NMR Biomed. 2013 Jan;26(1):58-64 [PMID: 22674568]
  14. J Headache Pain. 2021 Aug 21;22(1):98 [PMID: 34418951]
  15. Commun Biol. 2020 Mar 5;3(1):103 [PMID: 32139786]
  16. Front Neurol. 2023 Jun 23;14:1106612 [PMID: 37441607]
  17. J Headache Pain. 2021 Jul 22;22(1):79 [PMID: 34294048]
  18. Hum Brain Mapp. 1999;8(4):272-84 [PMID: 10619420]
  19. Headache. 1995 Jul-Aug;35(7):387-96 [PMID: 7672955]
  20. J Headache Pain. 2023 Sep 11;24(1):125 [PMID: 37691118]
  21. Headache. 2011 Oct;51(9):1358-73 [PMID: 21883197]
  22. Sci Rep. 2020 Aug 20;10(1):14062 [PMID: 32820214]
  23. Hum Brain Mapp. 2023 Apr 15;44(6):2224-2233 [PMID: 36649309]
  24. Cephalalgia. 2011 Jan;31(1):6-12 [PMID: 20974609]
  25. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  26. Neurology. 2013 Oct 1;81(14):1260-8 [PMID: 23986301]
  27. PLoS Med. 2006 Oct;3(10):e402 [PMID: 17048979]
  28. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  29. Headache. 2008 Jul;48(7):1044-55 [PMID: 18479421]
  30. J Headache Pain. 2018 Jul 13;19(1):53 [PMID: 30006780]
  31. Cereb Cortex. 2018 Sep 1;28(9):3095-3114 [PMID: 28981612]
  32. Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579 [PMID: 27791099]
  33. J Headache Pain. 2019 Dec 19;20(1):116 [PMID: 31856703]
  34. Cephalalgia. 2023 Nov;43(11):3331024231212574 [PMID: 37950678]
  35. Sci Rep. 2023 Jun 13;13(1):9604 [PMID: 37311825]
  36. Cephalalgia. 2009 Oct;29(10):1042-8 [PMID: 19735532]
  37. Radiology. 2013 Jul;268(1):170-80 [PMID: 23533286]
  38. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  39. Front Neurol. 2022 Jul 27;13:930383 [PMID: 35968305]
  40. Lancet. 2021 Apr 17;397(10283):1496-1504 [PMID: 33773610]
  41. Front Neurol. 2023 Jan 30;13:1105592 [PMID: 36793799]
  42. Neuroimage. 2014 Nov 15;102 Pt 1:3-10 [PMID: 24845622]
  43. Nat Rev Neurol. 2010 Oct;6(10):573-82 [PMID: 20820195]
  44. Neuroimage. 2011 Feb 1;54(3):2033-44 [PMID: 20851191]
  45. Pain. 2019 Dec;160(12):2776-2786 [PMID: 31408050]
  46. J Headache Pain. 2019 Mar 25;20(1):29 [PMID: 30909865]
  47. Neurology. 2013 Oct 1;81(14):1191-6 [PMID: 23975872]
  48. Ann Neurol. 2023 Apr;93(4):729-742 [PMID: 36565271]
  49. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  50. Cephalalgia. 2016 May;36(6):526-33 [PMID: 26378082]
  51. Neuroimage. 2014 Apr 15;90:449-68 [PMID: 24389422]
  52. Brain Commun. 2022 Nov 26;5(1):fcac311 [PMID: 36751567]
  53. J Pain. 2013 Aug;14(8):836-44 [PMID: 23669074]
  54. Front Behav Neurosci. 2020 Oct 06;14:567588 [PMID: 33132860]
  55. Front Neuroinform. 2011 Jun 27;5:4 [PMID: 21743807]
  56. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]
  57. Neuroimage. 1999 Feb;9(2):195-207 [PMID: 9931269]
  58. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]

Grants

  1. NRF- 2017R1A2B2009086/National Research Foundation of Korea
  2. 1711198632/Korea Medical Device Development Fund
  3. No.2022-0-00448/RS-2022-II220448, Deep Total Recall: Continual Learning for Human-Like Recall of Artificial Neural Networks/Institute for Information and Communications Technology Promotion
  4. IBS-R015-D1/Institute for Basic Science

MeSH Term

Humans
Migraine Disorders
Magnetic Resonance Imaging
Female
Adult
Male
Longitudinal Studies
Machine Learning
Brain
Follow-Up Studies
Middle Aged
Multimodal Imaging
Young Adult

Word Cloud

Created with Highcharts 10.0.0modelmigraine0robustdiagnosticfunctionalphasesdataMRIpatientshealthycontrolsacrossperformancedifferentinterictalfollow-upfeaturesachievedusingbrainlearningtestingcombinationsepisodicvalidatedlongitudinal50corticalthicknesscurvaturesulcaldepthconnectivitygradientcentralityfeatureframework94AUCictal/peri-ictalrespectivelyclinicalmultimodalvalidationInter-individualvariabilitysymptomsdynamicnaturepathophysiologypresentsignificantchallengesconstructingstudyaimedintegratetypesmagneticresonanceimagingprovidingstructuralinformationdevelopmachineclassifiesmultiplehyperparametersensurestabilitylongitudinallyrepeatedSpecificallyconstructedclassifyictalwellsettingobtainedT1-weightedresting-stateage-sex-matchedcollectedoneyearMorphologicalincludinglow-dimensionalrepresentationdegreebetweennessutilizedemployedregularization-basedselectionmethodcombinedrandomforestclassifierconstructmodelsvaryingpenaltytermsspatialgranularitieswithinstrictcross-validationfoundcombinationclassificationassessedtestdataset87%accuracyareacurvedistinguishing85%9784%93includedtraining91%94%89%accuracies9698totalconfirmingrobustnessFeatureimportanceassociationanalysesexhibitedsomatomotorlimbicdefaultmoderegionsreliablemarkersfindingsdemonstratemachine-learningmayoffervaluableapproachdiagnosisdiversecohortshelpalleviatedecision-makingburdencliniciansMRI-basedmigraine:DiagnosisLongitudinalMachineMigraineMultimodal

Similar Articles

Cited By