Functional characterization of the DUF1127-containing small protein YjiS of Typhimurium.

Elisa Venturini, Sandra Maa��, Thorsten Bischler, D��rte Becher, J��rg Vogel, Alexander J Westermann
Author Information
  1. Elisa Venturini: Institute of Molecular Infection Biology (IMIB), University of W��rzburg, D-97080 W��rzburg, Germany.
  2. Sandra Maa��: Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany. ORCID
  3. Thorsten Bischler: Core Unit Systems Medicine, University of W��rzburg, D-97080 W��rzburg, Germany. ORCID
  4. D��rte Becher: Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany. ORCID
  5. J��rg Vogel: Institute of Molecular Infection Biology (IMIB), University of W��rzburg, D-97080 W��rzburg, Germany. ORCID
  6. Alexander J Westermann: Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 W��rzburg, Germany. ORCID

Abstract

Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS. Cell culture infection assays with mutants lacking or overexpressing YjiS suggested this small protein to delay bacterial escape from macrophages. Mutant scanning of the protein's conserved, arginine-rich DUF1127 domain excluded a major effect of single amino acid substitutions on the infection phenotype. A comparative dual RNA-seq assay uncovered the molecular footprint of YjiS in the macrophage response to infection, with host effects related to oxidative stress and the cell cortex. Bacterial cell fractionation experiments demonstrated YjiS to associate with the inner membrane and proteins interacting with YjiS in pull-down experiments were enriched for inner membrane processes. Among the YjiS interactors was the two-component system SsrA/B, the master transcriptional activator of intracellular virulence genes and a suppressor of flagellar genes. Indeed, in the absence of YjiS, we observed elevated expression of motility genes and an increased number of flagella per bacterium. Together, our study points to a role for YjiS as a membrane-associated timer of pathogen dissemination.

Keywords

References

  1. PLoS Pathog. 2009 Feb;5(2):e1000306 [PMID: 19229334]
  2. PLoS Pathog. 2015 Nov 12;11(11):e1005262 [PMID: 26561851]
  3. Nat Biotechnol. 2014 Sep;32(9):896-902 [PMID: 25150836]
  4. Mol Microbiol. 2020 Nov;114(5):710-720 [PMID: 32602138]
  5. PLoS Pathog. 2013;9(7):e1003388 [PMID: 23853578]
  6. Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56 [PMID: 26527722]
  7. Int J Med Microbiol. 2006 Nov;296(7):435-47 [PMID: 16904940]
  8. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  9. FEBS Lett. 2010 May 3;584(9):1840-7 [PMID: 19837069]
  10. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11591-11596 [PMID: 27671629]
  11. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  12. Curr Opin Microbiol. 2017 Oct;39:81-88 [PMID: 29111488]
  13. Trends Cell Biol. 2017 Sep;27(9):685-696 [PMID: 28528987]
  14. Structure. 2020 Jun 2;28(6):625-634.e6 [PMID: 32348749]
  15. PLoS Genet. 2010 Mar 12;6(3):e1000875 [PMID: 20300643]
  16. Curr Biol. 2022 Jan 10;32(1):136-148.e5 [PMID: 34762820]
  17. mBio. 2021 Apr 13;12(2): [PMID: 33849981]
  18. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  19. Environ Microbiol. 2021 Nov;23(11):6483-6502 [PMID: 34668288]
  20. J Bacteriol. 2022 Jan 18;204(1):e0034421 [PMID: 34516282]
  21. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  22. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  23. Nucleic Acids Res. 2021 Apr 6;49(6):3003-3019 [PMID: 33706375]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Methods Enzymol. 1991;204:18-43 [PMID: 1943777]
  26. J Bacteriol. 2022 Jan 18;204(1):e0034121 [PMID: 34309401]
  27. PLoS Genet. 2013 Apr;9(4):e1003456 [PMID: 23637626]
  28. Cell Host Microbe. 2014 Jan 15;15(1):72-83 [PMID: 24439899]
  29. Cell Rep. 2018 Oct 23;25(4):825-832.e5 [PMID: 30355489]
  30. Infect Immun. 2006 Feb;74(2):861-8 [PMID: 16428728]
  31. Infect Immun. 1997 Feb;65(2):630-5 [PMID: 9009323]
  32. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  33. Mol Microbiol. 1998 Oct;30(1):175-88 [PMID: 9786194]
  34. Mol Cell. 2019 Sep 5;75(5):1031-1042.e4 [PMID: 31327636]
  35. PLoS Genet. 2016 Aug 26;12(8):e1006258 [PMID: 27564394]
  36. J Bacteriol. 2020 Jun 1;: [PMID: 32482726]
  37. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  38. BMC Bioinformatics. 2013 Jan 16;14:4 [PMID: 23323735]
  39. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):E757-64 [PMID: 22383560]
  40. Microbiology (Reading). 2010 Jul;156(Pt 7):1909-1917 [PMID: 20430813]
  41. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  42. Curr Opin Microbiol. 2005 Feb;8(1):10-5 [PMID: 15694851]
  43. J Bacteriol. 2020 Oct 22;202(22): [PMID: 33093235]
  44. Microlife. 2020 Oct 17;1(1):uqaa002 [PMID: 37223003]
  45. J Biol Chem. 2001 Mar 23;276(12):9083-92 [PMID: 11108722]
  46. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  47. PLoS Genet. 2022 Mar 4;18(3):e1010074 [PMID: 35245279]
  48. Infection. 2007 Oct;35(5):300-7 [PMID: 17885732]
  49. Int J Mol Sci. 2023 May 30;24(11): [PMID: 37298460]
  50. Front Immunol. 2014 Oct 07;5:481 [PMID: 25339955]
  51. Mol Microbiol. 2010 Nov;78(3):669-85 [PMID: 20807201]
  52. Elife. 2016 Jan 23;5: [PMID: 26802627]
  53. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  54. Microb Cell. 2018 Oct 18;5(12):525-544 [PMID: 30533418]
  55. Mol Microbiol. 2019 Jan;111(1):131-144 [PMID: 30276893]
  56. J Bacteriol. 2009 Feb;191(4):1278-92 [PMID: 19074398]
  57. EMBO J. 2012 Oct 17;31(20):4005-19 [PMID: 22922465]
  58. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  59. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  60. Bioinformatics. 2014 Dec 1;30(23):3421-3 [PMID: 25123900]
  61. Nucleic Acids Res. 2020 Sep 18;48(16):9301-9319 [PMID: 32813020]
  62. Curr Opin Microbiol. 2007 Feb;10(1):24-9 [PMID: 17208038]
  63. F1000Res. 2018 Aug 24;7:1338 [PMID: 30254741]
  64. Mol Microbiol. 2000 May;36(3):749-61 [PMID: 10844662]
  65. Nature. 2016 Jan 28;529(7587):496-501 [PMID: 26789254]
  66. Elife. 2016 Feb 02;5: [PMID: 26880544]
  67. J Bacteriol. 2001 Mar;183(6):1835-42 [PMID: 11222580]
  68. Cell Host Microbe. 2013 Dec 11;14(6):683-95 [PMID: 24331466]
  69. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8739-44 [PMID: 15173591]
  70. Cell Microbiol. 2008 Apr;10(4):958-84 [PMID: 18031307]
  71. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  72. Anal Chem. 2014 Aug 5;86(15):7421-7 [PMID: 24987932]
  73. Mol Syst Biol. 2019 Feb 22;15(2):e8290 [PMID: 30796087]
  74. PLoS Pathog. 2017 Jul 13;13(7):e1006497 [PMID: 28704543]
  75. Cell Host Microbe. 2017 Aug 9;22(2):217-231 [PMID: 28799907]
  76. Nucleic Acids Res. 2020 Feb 20;48(3):1029-1042 [PMID: 31504789]
  77. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  78. J Bacteriol. 2006 Mar;188(6):2233-43 [PMID: 16513753]
  79. PLoS Comput Biol. 2009 Sep;5(9):e1000502 [PMID: 19750212]
  80. Front Microbiol. 2020 Jun 09;11:1228 [PMID: 32582124]

Word Cloud

Created with Highcharts 10.0.0YjiSsmallproteininfectionproteinsgenesBacterialprocessescharacterizationaminoacidintracellularroleDUF1127dualRNA-seqmacrophagecellexperimentsinnermembraneSsrA/BflagellaTyphimuriumimpactdiversephysiologicalhowevertechnicalchallengesposedsizehamperedsystematicidentificationbiochemicalquestuncoverrelevantpathogenicitypreviouslyidentified54stronglyinducedpathogen'sstagesetcharacterizeCellcultureassaysmutantslackingoverexpressingsuggesteddelaybacterialescapemacrophagesMutantscanningprotein'sconservedarginine-richdomainexcludedmajoreffectsinglesubstitutionsphenotypecomparativeassayuncoveredmolecularfootprintresponsehosteffectsrelatedoxidativestresscortexfractionationdemonstratedassociateinteractingpull-downenrichedAmonginteractorstwo-componentsystemmastertranscriptionalactivatorvirulencesuppressorflagellarIndeedabsenceobservedelevatedexpressionmotilityincreasednumberperbacteriumTogetherstudypointsmembrane-associatedtimerpathogendisseminationFunctionalDUF1127-containingSalmonellaco-immunoprecipitationhost���pathogeninteractionmassspectrometry

Similar Articles

Cited By