Advancing drug delivery research: sustainable strategies for innovation and translation.

Aliasgar Shahiwala
Author Information
  1. Aliasgar Shahiwala: Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, UAE. alishahiwala@gmail.com. ORCID

Abstract

Sustainable systems are designed to promote lasting viability and resilience while reducing negative effects on the environment, society, and economy. Like many others, the drug delivery field is facing the challenges of the global environmental crisis. Despite its rapid growth and significant funding, there has been a noticeable slowdown in the rate of advancement, impacting the economy, society, and environment. This paper delves into sustainable strategies for drug delivery research, including reducing pill burden through controlled release systems, use of bio-degradable/absorbable polymers, reduction in excipient requirements and use of functional excipients, clinically viable drug delivery system designs, non-invasive/self-administration technologies, and use of relevant in vitro and in vivo tools and computational approaches. When adopted, these strategies can help researchers create widely available, reasonably priced, and ecologically friendly drug delivery systems, thereby advancing sustainable healthcare for all. The manuscript also advocates for funding policies that support sustainable drug delivery research. It underscores the need to integrate sustainability principles into drug delivery research to achieve the broader agenda of global sustainability and well-being, such as SDG 3 (Good Health and Well-being), SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation, and Infrastructure), and SDG 12 (Responsible Consumption and Production).

Keywords

References

  1. Singh RL, Singh PK. Global Environmental Problems. In: Singh RL, editor. Principles and Applications of Environmental Biotechnology for a Sustainable Future [Internet]. Singapore: Springer Singapore; 2017. p. 13���41. Available from: https://doi.org/10.1007/978-981-10-1866-4_2
  2. United Nations. THE 17 GOALS | Sustainable Development [Internet]. 2030 Agenda for Sustainable Development. [cited 2024 Sep 6]. Available from: https://sdgs.un.org/goals
  3. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, Adeyi O, Barker P, Daelmans B, Doubova SV, English M, Garc��a-Elorrio E, Guanais F, Gureje O, Hirschhorn LR, Jiang L, Kelley E, Lemango ET, Liljestrand J, et al. High-quality health systems in the sustainable development goals era: time for a revolution. Lancet Glob Health. 2018;6(11):e1196���252. https://doi.org/10.1016/S2214-109X(18)30386-3 . [DOI: 10.1016/S2214-109X(18)30386-3]
  4. Janik-Karpinska E, Brancaleoni R, Niemcewicz M, Wojtas W, Foco M, Podogrocki M, Bijak M. Healthcare waste-a serious problem for global health. Healthcare (Basel). 2023;11(2):242. https://doi.org/10.3390/healthcare11020242 . [DOI: 10.3390/healthcare11020242]
  5. Erratum in: Lancet Glob Health. 2018 Nov;6(11):e1162. https://doi.org/10.1016/S2214-109X(18)30438-8 . Erratum in: Lancet Glob Health. 2018 Nov;6(11):e1162. https://doi.org/10.1016/S2214-109X(18)30456-X . Erratum in: Lancet Glob Health. 2021 Aug;9(8):e1067. https://doi.org/10.1016/S2214-109X(21)00250-3
  6. Lopez AD, Mathers CD, Ezzati M, et al., editors. Global burden of disease and risk factors. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11812/ Co-published by Oxford University Press, New York
  7. Remais JV, Zeng G, Li G, Tian L, Engelgau MM. Convergence of non-communicable and infectious diseases in low- and middle-income countries. Int J Epidemiol [Internet]. 2013 [cited 2024 Aug 23];42:221���7. Available from: https://doi.org/10.1093/ije/dys135 .
  8. Bae YH, Park K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv Drug Deliv Rev. 2020;158:4���16. [PMID: 32592727]
  9. Shahiwala A. Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther Deliv [Internet]. 2022 [cited 2024 Aug 23];13:205���9. Available from: https://pubmed.ncbi.nlm.nih.gov/35341330/ .
  10. Arnall AH. Worldwide Public Funding in Nanotechnology [Internet]. 2020 [cited 2024 Feb 1]. Available from: https://www.azonano.com/article.aspx?ArticleID=1077 .
  11. Where Do the Millions of Cancer Research Dollars Go Every Year? [Internet]. 2013 [cited 2024 Feb 1]. Available from: https://slate.com/human-interest/2013/02/where-do-the-millions-of-cancer-research-dollars-go-every-year.html .
  12. Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide ��� identification of problems and overcoming obstacles. Transl Med Commun. 2019;4:1���19. [DOI: 10.1186/s41231-019-0050-7]
  13. Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev [Internet]. 2007 [cited 2024 Nov 12];59:631���44. Available from: https://pubmed.ncbi.nlm.nih.gov/17601629/
  14. Zhou X, Zhou X, Wang C, Zhou H. Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere. 2023;313:137489. [PMID: 36513206]
  15. Jakubowska E. A short history of drug nanocrystals ��� methods, milestones and meaning in pharmaceutical technology. J Drug Deliv Sci Technol [Internet]. 2024 [cited 2024 Nov 12];106400. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224724010694 .
  16. Bosetti R, Jones SL. Cost���Effectiveness of Nanomedicine: Estimating the Real Size of Nano-Costs. Nanomedicine [Internet]. 2019 [cited 2024 Nov 12];14:1367���70. Available from: https://www.tandfonline.com/doi/abs/10.2217/nnm-2019-0130 .
  17. Hu H, Cohen G, Sharma B, Yin H, Mcconnell R. Sustainability in Health Care. Annu Rev Environ Resour. 2022;47:173���96. [DOI: 10.1146/annurev-environ-112320-095157]
  18. Calabrese M, Suparaku S, Santovito S, Hysa X. Preventing and developmental factors of sustainability in healthcare organisations from the perspective of decision makers: an exploratory factor analysis. BMC Health Serv Res. 2023;23:797. [PMID: 37491258]
  19. Cripps M, Scarbrough H. Making digital health ���Solutions��� sustainable in healthcare systems: a practitioner perspective. Front Digit Health. 2022;4:727421. [PMID: 35434699]
  20. Laprise C. It���s time to take a sustainable approach to health care in the face of the challenges of the 21st century. One Health. 2023;16:100510. [PMID: 36844975]
  21. Sharma SK, Tripathi VB. Sustainable healthcare system: providers initiatives for quality improvement of healthcare organisation. J Health Manag. 2022;26:293���300. [DOI: 10.1177/09720634221128727]
  22. Al-mansouri A, Hamad AI, Al-Ali FS, Ibrahim MIM, Kheir N, Al-Ziftawi NH, et al. Pill-burden and its association with treatment burden among patients with advanced stages of chronic kidney disease. Saudi Pharm J. 2023;31:678���86. [PMID: 37181136]
  23. Inside information made public: Nanoform Announces Important Milestone with Promising Clinical Results for Patient-Centric Nanotechnology-Enhanced Enzalutamide ��� Nanoform small is powerful [Internet]. [cited 2024 Aug 23]. Available from: https://nanoform.com/en/inside-information-made-public-nanoform-announces-important-milestone-with-promising-clinical-results-for-patient-centric-nanotechnology-enhanced-enzalutamide/ .
  24. Inside information made public: Nanoform Announces Important Milestone with Promising Clinical Results for Patient-Centric Nanotechnology-Enhanced Enzalutamide [Internet]. 2024 [cited 2024 Feb 4]. Available from: https://nanoform.com/en/inside-information-made-public-nanoform-announces-important-milestone-with-promising-clinical-results-for-patient-centric-nanotechnology-enhanced-enzalutamide/ .
  25. Romley JA, Xie Z, Chiou T, Goldman D, Peters AL. Extended-release formulation and medication adherence. J Gen Intern Med. 2020;35(1):354���6. https://doi.org/10.1007/s11606-019-05275-1 . [DOI: 10.1007/s11606-019-05275-1]
  26. Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25:24. [PMID: 34321111]
  27. Tatham LM, Liptrott NJ, Rannard SP, Owen A. Long-acting injectable statins-is it time for a paradigm shift? Molecules. 2019;24:2685. [PMID: 31344834]
  28. Rahnfeld L, Luciani P. Injectable lipid-based depot formulations: where do we stand? Pharmaceutics. 2020;12:1���28. [DOI: 10.3390/pharmaceutics12060567]
  29. Sharma R, Yadav S, Yadav V, Akhtar J, Katari O, Kuche K, et al. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev. 2023;199:114901. [PMID: 37257756]
  30. Bauer A, Berben P, Chakravarthi SS, Chattorraj S, Garg A, Gourdon B, et al. Current state and opportunities with long-acting injectables: industry perspectives from the innovation and quality consortium ���long-acting injectables��� working group. Pharm Res. 2023;40:1601���31. [PMID: 36811809]
  31. Li W, Tang J, Lee D, Tice TR, Schwendeman SP, Prausnitz MR. Clinical translation of long-acting drug delivery formulations. Nat Rev Mater. 2022;7:406���20. [DOI: 10.1038/s41578-021-00405-w]
  32. Baryakova TH, Pogostin BH, Langer R, McHugh KJ. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat Rev Drug Discov [Internet]. 2023 [cited 2024 Nov 14];22:387. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10041531/ .
  33. Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NGH. Optimising antibiotic usage to treat bacterial infections. Sci Rep 2016 6:1 [Internet]. 2016 [cited 2024 Nov 14];6:1���10. Available from: https://www.nature.com/articles/srep37853 .
  34. Tyson RJ, Park CC, Powell JR, Patterson JH, Weiner D, Watkins PB, et al. Precision dosing priority criteria: drug, disease, and patient population variables. Front Pharmacol [Internet]. 2020 [cited 2024 Nov 14];11:420. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7188913/ .
  35. Shah H, Jain A, Laghate G, Prabhudesai D. Chapter 32 - Pharmaceutical excipients. In: Adejare A, editor. Remington (Twenty-third Edition) [Internet]. Academic Press; 2021. p. 633���43. Available from: https://www.sciencedirect.com/science/article/pii/B9780128200070000325 .
  36. Abrantes CG, Duarte D, Reis CP. An overview of pharmaceutical excipients: safe or not safe? J Pharm Sci. 2016;105:2019���26. [PMID: 27262205]
  37. Hamman J, Steenekamp J. Excipients with specialized functions for effective drug delivery. Expert Opin Drug Deliv [Internet]. 2012 [cited 2024 Aug 23];9:219���30. Available from: https://www.tandfonline.com/doi/abs/10.1517/17425247.2012.647907
  38. DiFranco N. Excipient-based strategies to harness complex therapeutics | Pharma Manufacturing [Internet]. 2024 [cited 2024 Jan 31]. Available from: https://www.pharmamanufacturing.com/sector/small-molecule/article/33017018/excipient-based-strategies-to-harness-complex-therapeutics
  39. Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6:197���208. [PMID: 19239391]
  40. Pifferi G, Santoro P, Pedrani M. Quality and functionality of excipients. Il Farmaco. 1999;54:1���14. [PMID: 10321025]
  41. Hamman J, Steenekamp J. Excipients with specialized functions for effective drug delivery. Expert Opin Drug Deliv. 2012;9:219���30. [PMID: 22196483]
  42. Muehlenfeld C, Duffy P, Yang F, Zerme��o P��rez D, El-Saleh F, Durig T. Excipients in pharmaceutical additive manufacturing: a comprehensive exploration of polymeric material selection for enhanced 3D printing. Pharmaceutics 2024, Vol 16, Page 317 [Internet]. 2024 [cited 2024 Aug 23];16:317. Available from: https://www.mdpi.com/1999-4923/16/3/317/htm
  43. Miller DA, Ellenberger D, Porfirio T, Gil M. Spray-Drying Technology. AAPS advances in the pharmaceutical sciences series [Internet]. 2022 [cited 2024 Aug 23];50:377���452. Available from: https://link.springer.com/chapter/10.1007/978-3-030-88719-3_10 .
  44. Kwon GS, Furgeson DY. 4 - Biodegradable polymers for drug delivery systems. In: Jenkins M, editor. Biomedical Polymers [Internet]. Woodhead Publishing; 2007. p. 83���110. Available from: https://www.sciencedirect.com/science/article/pii/B9781845690700500047 .
  45. Puri D, Choudhary D, Yasir M, Mishra R, Sharma S, Goel R, et al. Chapter 18 - A prospective utilization of biodegradable polymers for controlled drug-delivery applications. In: Verma D, Okhawilai M, Goh KL, Ramakrishna S, Pasbakhsh P, Sharma M, editors. Bioresorbable Polymers and their Composites [Internet]. Woodhead Publishing; 2024. p. 443���67. Available from: https://www.sciencedirect.com/science/article/pii/B9780443189159000021 .
  46. Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, et al. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev. 2023;199:114950. [PMID: 37295560]
  47. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants���a review. J Funct Biomater [Internet]. 2017 [cited 2024 Nov 14];8:44. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5748551/ .
  48. Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, et al. Biodegradable and non-biodegradable biomaterials and their effect on cell differentiation. Int J Mol Sci [Internet]. 2022 [cited 2024 Nov 14];23:16185. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9785373/ .
  49. Mahmud MZ Al, Islam MD, Mobarak MH. The development of eco-friendly biopolymers for use in tissue engineering and drug delivery. J Nanomater [Internet]. 2023 [cited 2024 Aug 23];2023:9270064. Available from: https://onlinelibrary.wiley.com/doi/full/10.1155/2023/9270064 .
  50. Abulateefeh SR. Long-acting injectable PLGA/PLA depots for leuprolide acetate: successful translation from bench to clinic. Drug Deliv Transl Res [Internet]. 2023 [cited 2024 Nov 14];13:520���30. Available from: https://link.springer.com/article/10.1007/s13346-022-01228-0 .
  51. Iuchi T, Inoue A, Hirose Y, Morioka M, Horiguchi K, Natsume A, et al. Long-term effectiveness of Gliadel implant for malignant glioma and prognostic factors for survival: 3-year results of a postmarketing surveillance in Japan. Neurooncol Adv [Internet]. 2022 [cited 2024 Nov 14];4:vdab189. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8807118/ .
  52. Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020;24:1���12. [DOI: 10.1186/s40824-020-00190-7]
  53. Kefayat A, Hosseini M, Ghahremani F, Jolfaie NA, Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnol. 2022;20:1���16. [DOI: 10.1186/s12951-022-01380-2]
  54. Sahana TG, Rekha PD. Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep. 2018;45:2857���67. [PMID: 30094529]
  55. Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, et al. Recent advances in biodegradable and biocompatible synthetic polymers used in skin wound healing. Materials. 2023;16:5459. [PMID: 37570163]
  56. Xu Q, Fa H, Yang P, Wang Q, Xing Q. Progress of biodegradable polymer application in cardiac occluders. J Biomed Mater Res B Appl Biomater. 2024;112:e35351. [PMID: 37974558]
  57. Brownlee S, Chalkidou K, Doust J, Elshaug AG, Glasziou P, Heath I, et al. Evidence for overuse of medical services around the world. The Lancet [Internet]. 2017 [cited 2024 Aug 24];390:156���68. Available from: http://www.thelancet.com/article/S0140673616325855/fulltext
  58. Yong J, Yang O. Does socioeconomic status affect hospital utilization and health outcomes of chronic disease patients? Eur J Health Econ [Internet]. 2021 [cited 2024 Aug 24];22:329���39. Available from: https://link.springer.com/article/10.1007/s10198-020-01255-z .
  59. Dobkin C, Finkelstein A, Kluender R, Notowidigdo MJ. The Economic Consequences of Hospital Admissions. Am Econ Rev [Internet]. 2018 [cited 2024 Aug 24];108:308���52. Available from: https://doi.org/10.1257/aer.20161038 http://www.presidency.ucsb.edu/ws/?pid=27123
  60. Vllasaliu D. Non-invasive drug delivery systems. Pharmaceutics. 2021;13(5):611. https://doi.org/10.3390/pharmaceutics13050611 . [DOI: 10.3390/pharmaceutics13050611]
  61. Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol [Internet]. 2022 [cited 2024 Nov 14];13. Available from: https://pubmed.ncbi.nlm.nih.gov/36452220/
  62. Yue L, Zhang X, Zhao C, Chen R, Chen X, Rao L. Inhaled drug delivery: Past, present, and future. Nano Today. 2023;52:101942. [DOI: 10.1016/j.nantod.2023.101942]
  63. Shahiwala A. Formulation approaches in enhancement of patient compliance to oral drug therapy. Expert Opin Drug Deliv [Internet]. 2011 [cited 2024 Nov 14];8:1521���9. Available from: https://pubmed.ncbi.nlm.nih.gov/21995544/
  64. Shahiwala A. Chapter 13 - Applications of Polymers in Ocular Drug Delivery. In: Misra A, Shahiwala A, editors. Applications of Polymers in Drug Delivery (Second Edition) [Internet]. Elsevier; 2021. p. 355���92. Available from: https://www.sciencedirect.com/science/article/pii/B9780128196595000136
  65. Boeri M, Szegvari B, Hauber B, Mange B, Mountian I, Schiff M, et al. From drug-delivery device to disease management tool: A study of preferences for enhanced features in next-generation self-injection devices. Patient Prefer Adherence [Internet]. 2019 [cited 2024 Aug 24];13:1093���110. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=dppa20 .
  66. Baryakova TH, Pogostin BH, Langer R, McHugh KJ. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nature Reviews Drug Discovery 2023 22:5 [Internet]. 2023 [cited 2024 Aug 24];22:387���409. Available from: https://www.nature.com/articles/s41573-023-00670-0 .
  67. Goyal AK, Singh R, Chauhan G, Rath G. Non-invasive systemic drug delivery through mucosal routes. Artif Cells Nanomed Biotechnol. 2018;46:539���51. [PMID: 29687750]
  68. Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release. 2022;351:361���80. [PMID: 36169040]
  69. Zhang YB, Xu D, Bai L, Zhou YM, Zhang H, Cui YL. A review of non-invasive drug delivery through respiratory routes. Pharmaceutics. 2022;14:1974. [PMID: 36145722]
  70. Shahiwala A. Physiological determinants and plausible ���6R��� roadmap for clinical success of nanomedicines. 102217/nnm-2023���0114 [Internet]. 2023 [cited 2024 Jan 31];18:1207���22. Available from: https://www.futuremedicine.com/doi/10.2217/nnm-2023-0114 .
  71. Kumar P, Agrahari V. Emerging Trends and Translational Challenges in Drug and Vaccine Delivery. Pharmaceutics [Internet]. 2024 [cited 2024 Aug 24];16:16. Available from: /pmc/articles/PMC10819098/
  72. Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer [Internet]. 2023 [cited 2024 Aug 24];22:1���103. Available from: https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-023-01865-0 .
  73. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J���: SPJ. 2018;26:64. [PMID: 29379334]
  74. Shahiwala A. Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther Deliv. 2022;13:205���9. [PMID: 35341330]
  75. Shahiwala A. Physiological determinants and plausible ���6R��� roadmap for clinical success of nanomedicines. 102217/nnm-2023���0114. 2023;18:1207���22.
  76. Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. Nat Rev Bioeng. 2023;1:545���59. [DOI: 10.1038/s44222-023-00063-3]
  77. Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015;14:248���60. [PMID: 25792263]
  78. Franzen N, van Harten WH, Ret��l VP, Loskill P, van den Eijnden-van Raaiji J, IJzerman M. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov Today. 2019;24:1720���4. [PMID: 31185290]
  79. Qiu Y, Duan JZ. Chapter 16 - In Vitro/In Vivo Correlations: Fundamentals, Development Considerations, and Applications. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri R V, editors. Developing Solid Oral Dosage Forms (Second Edition) [Internet]. Boston: Academic Press; 2017. p. 415���52. Available from: https://www.sciencedirect.com/science/article/pii/B9780128024478000169 .
  80. Cook JA. Development strategies for IVIVC in an industrial environment. Biopharm Drug Dispos. 2012;33:349���53. [PMID: 22581469]
  81. Qu Y, Ye J, Lin B, Luo Y, Zhang X. Organ mimicking technologies and their applications in drug discovery. Intell Pharm. 2023;1:73���89.
  82. Wang Y, Gao Y, Pan Y, Zhou D, Liu Y, Yin Y, et al. Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharm Sin B. 2023;13:2483���509. [PMID: 37425038]
  83. Abraham J. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Handbook of Transnational Economic Governance Regimes. 2009. p. 1041���53.
  84. Pramod K, Ma T, Charoo N, Ansari S, Ali J. Pharmaceutical product development: A quality by design approach. Int J Pharm Investig. 2016;6:129. [PMID: 27606256]
  85. Gopinathan S, Nouraldeen A, Wilson AGE. Development and Application of a High-Throughput Formulation Screening Strategy for Oral Administration in Drug Discovery. Future Med Chem [Internet]. 2010 [cited 2024 Nov 14];2:1391���8. Available from: https://www.tandfonline.com/doi/abs/10.4155/fmc.10.204 .
  86. Weaver E, O���Hagan C, Lamprou DA. The sustainability of emerging technologies for use in pharmaceutical manufacturing. Expert Opin Drug Deliv [Internet]. 2022 [cited 2024 Nov 14];19:861���72. Available from: https://pubmed.ncbi.nlm.nih.gov/35732275/ .
  87. Dedeloudi A, Weaver E, Lamprou DA. Machine learning in additive manufacturing & Microfluidics for smarter and safer drug delivery systems. Int J Pharm. 2023;636:122818. [PMID: 36907280]
  88. Ristevski B, Chen M. Big Data Analytics in Medicine and Healthcare. J Integr Bioinform [Internet]. 2018 [cited 2024 Nov 14];15:20170030. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6340124/
  89. Viceconti M, Hunter P, Hose R. Big data, big knowledge: big data for personalized healthcare. IEEE J Biomed Health Inform. 2015;19:1209���15. [PMID: 26218867]
  90. Wu PY, Cheng CW, Kaddi CD, Venugopalan J, Hoffman R, Wang MD. Omic and electronic health record big data analytics for precision medicine. IEEE Trans Biomed Eng. 2017;64:263���73. [PMID: 27740470]
  91. Wu PY, Cheng CW, Kaddi CD, Venugopalan J, Hoffman R, Wang MD. Omic and electronic health record big data analytics for precision medicine. IEEE Trans Biomed Eng. 2017;64(2):263���73. https://doi.org/10.1109/TBME.2016.2573285 . [DOI: 10.1109/TBME.2016.2573285]
  92. Yang Y, Ye Z, Su Y, Zhao Q, Li X, Ouyang D. Deep learning for in vitro prediction of pharmaceutical formulations. Acta Pharm Sin B. 2019;9:177���85. [PMID: 30766789]
  93. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. Nature Publishing Group; 2019. p. 463���77.
  94. Guerra AC, Glassey J. Machine learning in biopharmaceutical manufacturing. Eur Pharm Rev. 2018;23:62���5.
  95. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463���77. https://doi.org/10.1038/s41573-019-0024-5 . [DOI: 10.1038/s41573-019-0024-5]
  96. Lo-Ciganic WH, Donohue JM, Thorpe JM, Perera S, Thorpe CT, Marcum ZA, et al. Using machine learning to examine medication adherence thresholds and risk of hospitalization. Med Care. 2015;53:720���8. [PMID: 26147866]
  97. Loucera C, Esteban-Medina M, Rian K, Falco MM, Dopazo J, Pe��a-Chilet M. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct Target Ther. 2020;5(1):290. https://doi.org/10.1038/s41392-020-00417-y . [DOI: 10.1038/s41392-020-00417-y]
  98. Amjad E, Asnaashari S, Sokouti B, Dastmalchi S. Impact of gene biomarker discovery tools based on protein-protein interaction and machine learning on performance of artificial intelligence models in predicting clinical stages of breast cancer. Interdiscip Sci. 2020;12:476���86. [PMID: 32914206]
  99. Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. The use of machine learning in rare diseases: A scoping review. Orphanet J Rare Dis. BioMed Central Ltd; 2020. p. 145.
  100. Plant D, Barton A. Machine learning in precision medicine: lessons to learn. Nat Rev Rheumatol. Nature Research; 2021. p. 5���6.
  101. Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol Sci. Elsevier Ltd; 2019. p. 577���91.
  102. Plant D, Barton A. Machine learning in precision medicine: lessons to learn. Nat Rev Rheumatol. 2021;17(1):5���6. https://doi.org/10.1038/s41584-020-00538-2 . [DOI: 10.1038/s41584-020-00538-2]
  103. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577���91. https://doi.org/10.1016/j.tips.2019.05.005 . [DOI: 10.1016/j.tips.2019.05.005]
  104. Giger ML. Machine Learning in Medical Imaging. J Am Coll Radiol. 2018;15:512���20. [PMID: 29398494]
  105. Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, et al. COVID-19 Outbreak prediction with machine learning. Algorithms. 2020;13:249. [DOI: 10.3390/a13100249]
  106. Barnard AS, Motevalli B, Parker AJ, Fischer JM, Feigl CA, Opletal G. Nanoinformatics, and the big challenges for the science of small things. Nanoscale Royal Soc Chem. 2019;11:19190���201.
  107. Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz. Royal Society of Chemistry; 2019. p. 365���77.
  108. Kalyane D, Sanap G, Paul D, Shenoy S, Anup N, Polaka S, et al. Artificial intelligence in the pharmaceutical sector: current scene and future prospect. The Future of Pharmaceutical Product Development and Research. Elsevier; 2020. p. 73���107.
  109. Shahiwala A. Chapter 5 - AI approaches for the development of drug delivery systems. In: Philip A, Shahiwala A, Rashid M, Faiyazuddin M, editors. A handbook of artificial intelligence in drug delivery [Internet]. Academic Press; 2023. pp. 83���96. Available from: https://www.sciencedirect.com/science/article/pii/B9780323899253000046 .
  110. Brazil R. Artificial intelligence: will it change the way drugs are discovered? Pharm J. 2017;299
  111. Wilson B, Km G. Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Nanomedicine (Lond). 2020;15(5):433���5. https://doi.org/10.2217/nnm-2019-0366 . [DOI: 10.2217/nnm-2019-0366]
  112. Shahiwala AF, Qawoogha SS, Faruqui N. Designing optimum drug delivery systems using machine learning approaches: a prototype study of niosomes. AAPS PharmSciTech. 2023;24(4):94. https://doi.org/10.1208/s12249-023-02547-2 . [DOI: 10.1208/s12249-023-02547-2]

Word Cloud

Created with Highcharts 10.0.0deliverydrugsustainableSDGsystemsstrategiesresearchuseimpactreducingenvironmentsocietyeconomyglobalfundingsustainabilitySustainabledesignedpromotelastingviabilityresiliencenegativeeffectsLikemanyothersfieldfacingchallengesenvironmentalcrisisDespiterapidgrowthsignificantnoticeableslowdownrateadvancementimpactingpaperdelvesincludingpillburdencontrolledreleasebio-degradable/absorbablepolymersreductionexcipientrequirementsfunctionalexcipientsclinicallyviablesystemdesignsnon-invasive/self-administrationtechnologiesrelevantvitrovivotoolscomputationalapproachesadoptedcanhelpresearcherscreatewidelyavailablereasonablypricedecologicallyfriendlytherebyadvancinghealthcaremanuscriptalsoadvocatespoliciessupportunderscoresneedintegrateprinciplesachievebroaderagendawell-being3GoodHealthWell-being7AffordableCleanEnergy9IndustryInnovationInfrastructure12ResponsibleConsumptionProductionAdvancingresearch:innovationtranslationDrugEconomicEnvironmentalSocialSustainability

Similar Articles

Cited By (1)