Robustly detecting mpox and non-mpox using a deep learning framework based on image inpainting.

Yujun Cao, Yubiao Yue, Xiaoming Ma, Di Liu, Rongkai Ni, Haihua Liang, Zhenzhang Li
Author Information
  1. Yujun Cao: Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China.
  2. Yubiao Yue: School of Biomedical Engineering, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China.
  3. Xiaoming Ma: Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China.
  4. Di Liu: Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China.
  5. Rongkai Ni: School of Biomedical Engineering, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China.
  6. Haihua Liang: School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, No. 293, Zhongshan Avenue West, Tianhe District, Guangzhou, 510665, China.
  7. Zhenzhang Li: School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, No. 293, Zhongshan Avenue West, Tianhe District, Guangzhou, 510665, China. zhenzhangli@gpnu.edu.cn.

Abstract

Due to the lack of efficient mpox diagnostic technology, mpox cases continue to increase. Recently, the great potential of deep learning models in detecting mpox and non-mpox has been proven. However, existing methods are susceptible to interference from various noises in real-world settings, require diverse non-mpox images, and fail to detect abnormal input, which makes them unsuitable for practical deployment and application. To address these challenges, we proposed a novel strategy based on image inpainting called "Mask, Inpainting, and Measure" (MIM). In MIM's pipeline, a generative adversarial network learns feature representations of mpox images by inpainting the masked mpox images. On this basis, MIM measure the similarity between the inpainted image and the original image to detect mpox and non-mpox. Compared with multi-class classification models, MIM can handle unknown categories and abnormal inputs more effectively. We used the recognized mpox dataset (MSLD) and a dataset containing 18 categories of non-mpox skin diseases to verify the effectiveness and robustness of MIM. Experimental results show that the average AUROC of MIM achieves 0.8237. In addition, external clinical testing further demonstrates the robustness of MIM. Importantly, we developed a free smartphone app to help the public and healthcare professionals detect mpox more conveniently.

Keywords

References

  1. Clin Infect Dis. 2014 Jan;58(2):260-7 [PMID: 24158414]
  2. J Cutan Pathol. 2023 Aug;50(8):706-710 [PMID: 36700334]
  3. J Med Syst. 2022 Oct 6;46(11):78 [PMID: 36201085]
  4. Life (Basel). 2023 Jan 16;13(1): [PMID: 36676198]
  5. Ann Intern Med. 2022 Aug;175(8):1175-1176 [PMID: 35605243]
  6. Diagnostics (Basel). 2023 May 17;13(10): [PMID: 37238256]
  7. Pathogens. 2023 Sep 11;12(9): [PMID: 37764961]
  8. Nat Med. 2023 Mar;29(3):738-747 [PMID: 36864252]
  9. Lancet. 2023 Jan 7;401(10370):60-74 [PMID: 36403582]
  10. Nat Med. 2020 Mar;26(3):360-363 [PMID: 32152582]
  11. Lancet Infect Dis. 2022 Aug;22(8):1153-1162 [PMID: 35623380]
  12. Expert Syst Appl. 2023 Apr 15;216:119483 [PMID: 36624785]
  13. IEEE Trans Image Process. 2004 Apr;13(4):600-12 [PMID: 15376593]
  14. Diagnostics (Basel). 2023 Apr 21;13(8): [PMID: 37189603]
  15. Biosecur Bioterror. 2014 Sep-Oct;12(5):263-73 [PMID: 25254915]
  16. Saudi Med J. 2024 Aug;45(9):1002-1003 [PMID: 39218470]
  17. ACS Omega. 2023 Aug 23;8(35):31747-31757 [PMID: 37692219]
  18. Sensors (Basel). 2023 Feb 05;23(4): [PMID: 36850381]
  19. Diagnostics (Basel). 2023 Jan 12;13(2): [PMID: 36673101]
  20. J Med Virol. 2023 Jan;95(1):e27902 [PMID: 35652133]
  21. Vaccine. 2011 Dec 30;29 Suppl 4:D54-9 [PMID: 22185831]
  22. Lancet Infect Dis. 2022 Jul;22(7):950 [PMID: 35752185]
  23. Digit Health. 2023 Jun 4;9:20552076231180054 [PMID: 37312961]
  24. J Med Syst. 2022 Oct 10;46(11):79 [PMID: 36210365]
  25. iScience. 2024 Apr 17;27(5):109766 [PMID: 38711448]
  26. Diagnostics (Basel). 2023 Sep 26;13(19): [PMID: 37835807]
  27. Med Nov Technol Devices. 2023 Jun;18:100243 [PMID: 37293134]
  28. Neural Netw. 2023 Apr;161:757-775 [PMID: 36848828]
  29. Sci Data. 2018 Aug 14;5:180161 [PMID: 30106392]
  30. BMC Infect Dis. 2023 Jun 27;23(1):438 [PMID: 37370031]

Grants

  1. 2022A1515011044/the NSF of Guangdong Province
  2. 2022A1515011044/the NSF of Guangdong Province
  3. 2021ZDJS028/the project of promoting research capabilities for key constructed disciplines in Guangdong Province
  4. 2021ZDJS028/the project of promoting research capabilities for key constructed disciplines in Guangdong Province
  5. 20230233/Scientific research project of Guangzhou Education Bureau
  6. 20230233/Scientific research project of Guangzhou Education Bureau
  7. 2301002693/Youth innovation talent project of guangdong provincial universities
  8. 2301002693/Youth innovation talent project of guangdong provincial universities
  9. 22GPNUZDJS31/the scientific research capacity improvement project of the doctoral program construction unit of Guangdong Polytechnic Normal University in 2022
  10. 22GPNUZDJS31/the scientific research capacity improvement project of the doctoral program construction unit of Guangdong Polytechnic Normal University in 2022
  11. 2019KQNCX067/the young creative talents of department education of Guangdong
  12. 2019KQNCX067/the young creative talents of department education of Guangdong

MeSH Term

Deep Learning
Humans
Image Processing, Computer-Assisted
Skin Diseases
Algorithms
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0mpoxMIMnon-mpoximagelearningimagesdetectinpaintingdeepmodelsdetectingabnormalbasedInpaintingcategoriesdatasetrobustnessDuelackefficientdiagnostictechnologycasescontinueincreaseRecentlygreatpotentialprovenHoweverexistingmethodssusceptibleinterferencevariousnoisesreal-worldsettingsrequirediversefailinputmakesunsuitablepracticaldeploymentapplicationaddresschallengesproposednovelstrategycalled"MaskMeasure"MIM'spipelinegenerativeadversarialnetworklearnsfeaturerepresentationsmaskedbasismeasuresimilarityinpaintedoriginalComparedmulti-classclassificationcanhandleunknowninputseffectivelyusedrecognizedMSLDcontaining18skindiseasesverifyeffectivenessExperimentalresultsshowaverageAUROCachieves08237additionexternalclinicaltestingdemonstratesImportantlydevelopedfreesmartphoneapphelppublichealthcareprofessionalsconvenientlyRobustlyusingframeworkDeepGenerativemodelImageMpoxDetectionNoveltydetection

Similar Articles

Cited By

No available data.