Flexible or fortified? How lichens balance defence strategies across climatic harshness gradients.

Inger K de Jonge, Peter Convey, Ingeborg J Klarenberg, Johannes H C Cornelissen, Stef Bokhorst
Author Information
  1. Inger K de Jonge: Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands. ORCID
  2. Peter Convey: British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK. ORCID
  3. Ingeborg J Klarenberg: Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands. ORCID
  4. Johannes H C Cornelissen: Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.
  5. Stef Bokhorst: Amsterdam Institute for Life and Environment (A-LIFE), Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands. ORCID

Abstract

Lichens play important roles in habitat formation and community succession in polar and alpine ecosystems. Despite their significance, the ecological effects of lichen traits remain poorly researched. We propose a trait trade-off for managing light exposure based on climatic harshness. In the harshest cold environments, where abiotic stress predominates over biotic pressures, lichens should rely on photostable, recalcitrant and immobile substances such as allomelanin and hydrophobic compounds. These compounds provide durable protection without the need for continual synthesis. In milder conditions where biotic interactions - for example, competition and pathogen presence - become increasingly pronounced, lichens should retain flexibility and produce simple protective secondary compounds that, in addition to functioning as light screens, can leach out to influence their direct environment. Preliminary empirical findings for Antarctic lichen species distribution are consistent with this hypothesised trade-off, in that lichens producing soluble compounds dominate in milder regions and are less represented at higher southern latitudes, where species producing insoluble compounds with a melanised thallus dominate. As climate change progresses, increasing temperatures and precipitation could make the currently coldest and driest areas more hospitable, allowing the ranges of lichens producing soluble compounds to expand, with cascading effects on rock weathering, nutrient cycling and other ecosystem processes.

Keywords

References

  1. J Comput Aided Mol Des. 2005 Jun;19(6):453-63 [PMID: 16231203]
  2. Trends Plant Sci. 2013 May;18(5):250-8 [PMID: 23415056]
  3. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11600-5 [PMID: 26324894]
  4. J Agric Food Chem. 2006 Apr 19;54(8):3033-40 [PMID: 16608227]
  5. Nat Prod Rep. 2013 Dec;30(12):1490-508 [PMID: 24170172]
  6. Ecology. 2015 Sep;96(9):2394-407 [PMID: 26594697]
  7. Sci Rep. 2017 Jul 24;7(1):5689 [PMID: 28740147]
  8. J Am Chem Soc. 2021 Mar 17;143(10):4005-4016 [PMID: 33673734]
  9. Environ Sci Technol. 1994 Jun 1;28(6):1139-44 [PMID: 22176242]
  10. Fungal Biol. 2022 May;126(5):375-384 [PMID: 35501033]
  11. Science. 2016 Jul 29;353(6298):488-92 [PMID: 27445309]
  12. FEMS Microbiol Ecol. 2023 Feb 28;99(3): [PMID: 36750176]
  13. Ecol Lett. 2022 Feb;25(2):416-426 [PMID: 34786803]
  14. FEMS Microbiol Ecol. 2016 Nov;92(11): [PMID: 27543320]
  15. Planta. 2019 Mar;249(3):709-718 [PMID: 30374913]
  16. Oecologia. 2007 May;152(2):299-306 [PMID: 17294219]
  17. Planta. 2010 Apr;231(5):1003-11 [PMID: 20135325]
  18. Q Rev Biol. 2003 Mar;78(1):23-55 [PMID: 12661508]
  19. Oecologia. 1988 Jan;74(4):531-536 [PMID: 28311759]
  20. Oecologia. 2004 Jul;140(2):211-6 [PMID: 15138881]
  21. New Phytol. 2020 Sep;227(5):1281-1283 [PMID: 32484275]
  22. New Phytol. 2025 Apr;246(2):406-415 [PMID: 39794879]
  23. Biol Rev Camb Philos Soc. 2017 Aug;92(3):1720-1738 [PMID: 27730713]
  24. Phytochemistry. 2005 Feb;66(3):337-44 [PMID: 15680990]
  25. Z Naturforsch C J Biosci. 2010 Mar-Apr;65(3-4):157-73 [PMID: 20469633]
  26. J Fungi (Basel). 2022 Jul 28;8(8): [PMID: 36012780]
  27. Chem Pharm Bull (Tokyo). 1969 Oct;17(10):2061-4 [PMID: 5353560]
  28. Protoplasma. 2017 May;254(3):1307-1315 [PMID: 27645140]
  29. Oecologia. 2005 Mar;143(1):94-105 [PMID: 15619096]
  30. Naturwissenschaften. 1999 Dec;86(12):559-70 [PMID: 10643590]

Grants

  1. ALWPP.2019.006/Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  2. /British Antarctic Survey

MeSH Term

Lichens
Climate
Climate Change
Ecosystem
Antarctic Regions

Word Cloud

Created with Highcharts 10.0.0compoundslichenslichenbioticproducingecologicaleffectstraitstrade-offlightclimaticharshnessmilderinteractions-secondaryspeciesdistributionsolubledominateLichensplayimportantroleshabitatformationcommunitysuccessionpolaralpineecosystemsDespitesignificanceremainpoorlyresearchedproposetraitmanagingexposurebasedharshestcoldenvironmentsabioticstresspredominatespressuresrelyphotostablerecalcitrantimmobilesubstancesallomelaninhydrophobicprovidedurableprotectionwithoutneedcontinualsynthesisconditionsexamplecompetitionpathogenpresencebecomeincreasinglypronouncedretainflexibilityproducesimpleprotectiveadditionfunctioningscreenscanleachinfluencedirectenvironmentPreliminaryempiricalfindingsAntarcticconsistenthypothesisedregionslessrepresentedhighersouthernlatitudesinsolublemelanisedthallusclimatechangeprogressesincreasingtemperaturesprecipitationmakecurrentlycoldestdriestareashospitableallowingrangesexpandcascadingrockweatheringnutrientcyclingecosystemprocessesFlexiblefortified?balancedefencestrategiesacrossgradientstrade‐offsfunctionallichenisedfungitrait‐environmentrelationships

Similar Articles

Cited By