Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Magdalena Wiecek, Mateusz Mardyla, Jadwiga Szymura, Malgorzata Kantorowicz, Justyna Kusmierczyk, Marcin Maciejczyk, Zbigniew Szygula
Author Information
  1. Magdalena Wiecek: Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland. ORCID
  2. Mateusz Mardyla: Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland. ORCID
  3. Jadwiga Szymura: Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland. ORCID
  4. Malgorzata Kantorowicz: Medical Institute, Academy of Applied Sciences in Nowy Targ, 34-400 Nowy Targ, Poland.
  5. Justyna Kusmierczyk: Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland. ORCID
  6. Marcin Maciejczyk: Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland. ORCID
  7. Zbigniew Szygula: Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland. ORCID

Abstract

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM). We corrected the post-exercise results for the percentage change in plasma volume. In all groups after exercise, there was an increase in LPO and resistin. In HFAT-NLBM, additionally, an increase in CAT and a decrease in SOD activity were noted, and in NFAT-NLBM, an increase in visfatin concentration was observed. In our study, the effect was demonstrated of a maximal effort on six (LPO, CAT, SOD, visfatin, resistin, and asprosin) of the twelve parameters investigated, while the effect of body composition on all parameters investigated was insignificant. Maximal intensity aerobic exercise induces secretion of resistin and damages lipids regardless of the exercising subjects' body composition. Large fat tissue content predisposes to exercise-induced disorders in the activity of antioxidant enzymes. We have also shown that it is necessary to consider changes in blood plasma volume in the assessment of post-exercise biochemical marker levels.

Keywords

References

  1. Cell Biol Int. 2000;23(11):749-53 [PMID: 10736199]
  2. J Appl Physiol (1985). 1988 Apr;64(4):1333-6 [PMID: 3378967]
  3. Eur J Appl Physiol. 2004 Mar;91(2-3):324-9 [PMID: 14586663]
  4. Int J Environ Res Public Health. 2022 Jul 19;19(14): [PMID: 35886639]
  5. Biomed Res Int. 2021 Feb 11;2021:1947928 [PMID: 33628774]
  6. J Physiol. 2013 Nov 1;591(21):5393-400 [PMID: 24000180]
  7. Sci Rep. 2023 Apr 29;13(1):7040 [PMID: 37120612]
  8. Free Radic Biol Med. 2024 Mar;213:123-137 [PMID: 38199289]
  9. J Sport Health Sci. 2020 Sep;9(5):415-425 [PMID: 32380253]
  10. Int J Environ Res Public Health. 2020 Apr 10;17(7): [PMID: 32290148]
  11. Metabolism. 1997 Oct;46(10):1109-12 [PMID: 9322790]
  12. J Sports Sci Med. 2009 Jun 01;8(2):190-6 [PMID: 24149525]
  13. J Muscle Res Cell Motil. 2015 Dec;36(6):377-93 [PMID: 26728750]
  14. Physiol Res. 2015;64(1):93-102 [PMID: 25194128]
  15. Nutrients. 2020 Jun 26;12(6): [PMID: 32604889]
  16. Clin Hemorheol Microcirc. 2003;28(1):29-40 [PMID: 12632010]
  17. Med Sci Sports Exerc. 2010 Mar;42(3):456-62 [PMID: 19952805]
  18. Eur J Med Res. 2013 May 01;18:12 [PMID: 23634778]
  19. Scand J Med Sci Sports. 2018 Jan;28(1):16-28 [PMID: 28453881]
  20. Int J Mol Sci. 2011;12(5):3117-32 [PMID: 21686173]
  21. PLoS One. 2011 Jan 20;6(1):e15981 [PMID: 21283791]
  22. Antioxidants (Basel). 2023 Mar 06;12(3): [PMID: 36978899]
  23. Nutr Res Rev. 2020 Dec;33(2):271-286 [PMID: 32138805]
  24. Nat Metab. 2020 Sep;2(9):817-828 [PMID: 32747792]
  25. Redox Rep. 2017 Jul;22(4):176-182 [PMID: 27077457]
  26. Redox Rep. 2017 Nov;22(6):478-485 [PMID: 28320258]
  27. Food Chem Toxicol. 2013 Nov;61:171-7 [PMID: 23747717]
  28. Clin Physiol Funct Imaging. 2014 Sep;34(5):377-83 [PMID: 24283399]
  29. Med Sci Sports Exerc. 2007 Jul;39(7):1107-13 [PMID: 17596778]
  30. Front Physiol. 2019 May 29;10:691 [PMID: 31191366]
  31. J Sports Med Phys Fitness. 2017 Jul-Aug;57(7-8):942-952 [PMID: 27139798]
  32. Metabolism. 2011 Feb;60(2):186-94 [PMID: 20102772]
  33. Sports Med. 2020 Jan;50(1):103-127 [PMID: 31529301]
  34. Oxid Med Cell Longev. 2017;2017:9410954 [PMID: 28168013]
  35. J Exerc Rehabil. 2016 Apr 26;12(2):113-7 [PMID: 27162773]
  36. J Sci Med Sport. 2007 Dec;10(6):411-7 [PMID: 16949870]
  37. J Clin Endocrinol Metab. 2014 Nov;99(11):E2154-61 [PMID: 25119310]
  38. Chronobiol Int. 2020 Aug;37(8):1252-1268 [PMID: 32741294]
  39. Front Physiol. 2018 Dec 10;9:1782 [PMID: 30618797]
  40. J Appl Physiol (1985). 1997 Jul;83(1):5-10 [PMID: 9216937]
  41. PLoS One. 2015 Nov 24;10(11):e0143499 [PMID: 26600020]
  42. J Appl Physiol. 1974 Aug;37(2):247-8 [PMID: 4850854]
  43. Front Physiol. 2022 Jul 11;13:907358 [PMID: 35899030]
  44. Med Sci Sports Exerc. 2009 Jan;41(1):137-43 [PMID: 19092696]
  45. Eur J Appl Physiol Occup Physiol. 1986;55(6):579-84 [PMID: 3096725]
  46. Front Physiol. 2018 Jul 27;9:1006 [PMID: 30140236]
  47. Sports Med Health Sci. 2023 Dec 11;6(4):324-330 [PMID: 39309458]
  48. Int J Sports Med. 2007 Jan;28(1):1-8 [PMID: 17133288]
  49. J Physiol. 2016 Sep 15;594(18):5195-207 [PMID: 27094017]
  50. Clin Chim Acta. 2000 Aug;298(1-2):145-56 [PMID: 10876011]
  51. Int J Environ Res Public Health. 2020 Jun 16;17(12): [PMID: 32560148]
  52. Med Sci Sports Exerc. 1997 Aug;29(8):1036-9 [PMID: 9268960]
  53. J Strength Cond Res. 2011 Sep;25(9):2400-9 [PMID: 21869626]
  54. Prog Mol Biol Transl Sci. 2015;135:313-36 [PMID: 26477920]
  55. Hormones (Athens). 2013 Apr-Jun;12(2):275-82 [PMID: 23933696]
  56. Biology (Basel). 2021 Dec 04;10(12): [PMID: 34943187]
  57. Eur J Appl Physiol. 2006 May;97(1):122-6 [PMID: 16525810]
  58. Eur J Endocrinol. 2014 Sep;171(3):343-52 [PMID: 24920292]
  59. J Anim Sci. 1997 May;75(5):1351-8 [PMID: 9159284]
  60. Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E24-31 [PMID: 16868228]
  61. J Biomed Biotechnol. 2011;2011:540458 [PMID: 21436993]
  62. Gen Physiol Biophys. 2012 Jun;31(2):211-9 [PMID: 22781825]
  63. Free Radic Biol Med. 2024 Jan;210:65-74 [PMID: 37977212]
  64. Respir Physiol Neurobiol. 2004 Nov 30;144(1):81-90 [PMID: 15522705]
  65. Clin Sci (Lond). 2008 Feb;114(4):275-88 [PMID: 18194136]
  66. Oxid Med Cell Longev. 2016;2016:9107210 [PMID: 26989456]
  67. PLoS One. 2013 Apr 11;8(4):e60563 [PMID: 23593248]
  68. Eur J Appl Physiol. 2005 Jan;93(4):502-5 [PMID: 15618990]
  69. Redox Rep. 2010;15(6):275-81 [PMID: 21208527]

Grants

  1. 2018/29/B/NZ7/02309/National Science Center

MeSH Term

Humans
Male
Adipokines
Exercise
Body Composition
Oxidative Stress
Antioxidants
Adult
Young Adult
Lipid Peroxidation
Catalase
Superoxide Dismutase
Resistin
Glutathione Peroxidase
Nicotinamide Phosphoribosyltransferase
Biomarkers

Chemicals

Adipokines
Antioxidants
Catalase
Superoxide Dismutase
Resistin
Glutathione Peroxidase
Nicotinamide Phosphoribosyltransferase
Biomarkers

Word Cloud

Created with Highcharts 10.0.0exercisebodycompositionresistinMaximaloxidativemaximalintensityLPOCATSODactivityvisfatinasprosinincreaseeffortinducesstressstudysecretionadipokineschangesconcentrationbloodabove-averagemassfatHFAT-NLBMNFAT-NLBMpost-exerciseplasmavolumeeffectparametersinvestigatedantioxidantenzymesphysicaldisturbancebody'senergyhomeostasiscausesaimdeterminewhetherprooxidant-antioxidantbalancedisturbancesregulatingmetabolisminduceddependentyounghealthynon-obeseindividualsdeterminedadvancedproteinoxidationproductsAOPPmarkersdamagenucleicacidsDNA/RNA/oxlipidperoxidationcatalasesuperoxidedismutaseglutathioneperoxidaseGPxwellconcentrationsleptinadiponectinirisinmenmuscleNFAT-HLBMaveragecorrectedresultspercentagechangegroupsadditionallydecreasenotedobserveddemonstratedsixtwelveinsignificantaerobicdamageslipidsregardlessexercisingsubjects'Largetissuecontentpredisposesexercise-induceddisordersalsoshownnecessaryconsiderassessmentbiochemicalmarkerlevelsIntensityExerciseInducesAdipokineSecretionDisruptsProoxidant-AntioxidantBalanceYoungMenDifferentBodyComposition

Similar Articles

Cited By