Impact of Edible Insect Polysaccharides on Mouse Gut Microbiota: A Study on White-Spotted Flower Chafer Larva () and Silkworm Pupa ().

Joon-Ha Lee, Hyojung Son, Sathiyamoorthy Subramaniyam, Hyun-Jung Lim, Sohyun Park, Ra-Yeong Choi, In-Woo Kim, Minchul Seo, Hae-Yong Kweon, Yongsoon Kim, Seong-Wan Kim, Jong-Soon Choi, Younhee Shin
Author Information
  1. Joon-Ha Lee: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea. ORCID
  2. Hyojung Son: Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea.
  3. Sathiyamoorthy Subramaniyam: Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea.
  4. Hyun-Jung Lim: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  5. Sohyun Park: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  6. Ra-Yeong Choi: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  7. In-Woo Kim: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  8. Minchul Seo: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea. ORCID
  9. Hae-Yong Kweon: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  10. Yongsoon Kim: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  11. Seong-Wan Kim: Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
  12. Jong-Soon Choi: Department of Family Medicine, College of Medicine, Kosin University, Busan 49267, Republic of Korea.
  13. Younhee Shin: Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea. ORCID

Abstract

The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, larva and pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes. Seven-week-old female C57BL/6J mice were administered the edible insects, along with fracto-oligosaccharide (FOS) as a positive control and sham (phosphate buffer saline (PBS)) as a negative control, to assess the relative abundance of insect-diet-associated gut microbes. In total, 567 genera and 470 species were observed, and among these, 15 bacterial genera were differentially abundant in all three groups. These results show that among the two insects, pupa polysaccharides have a greater ability to regulate beneficial probiotics and next-generation probiotics. In particular, , which has promising effects on the gastrointestinal tracts of humans and animals, was significantly enriched in both larva and pupa polysaccharides, similar to fracto-oligosaccharide. The results suggest that the consumption of these insects, particularly polysaccharides, can enhance the growth of beneficial gut microbes, potentially leading to improved overall health in healthy populations.

Keywords

References

  1. Curr Issues Mol Biol. 2022 Jul 07;44(7):3118-3130 [PMID: 35877439]
  2. Sci Rep. 2023 Jul 5;13(1):10916 [PMID: 37407617]
  3. Crit Rev Food Sci Nutr. 2020;60(11):1783-1796 [PMID: 31062600]
  4. Front Genet. 2021 Jan 13;11:593994 [PMID: 33519896]
  5. Carbohydr Polym. 2016 Jan 20;136:995-1001 [PMID: 26572439]
  6. Gut. 2023 Sep;72(9):1664-1677 [PMID: 36604114]
  7. J Appl Microbiol. 2007 Aug;103(2):445-53 [PMID: 17650205]
  8. Cell Biol Int. 2007 Sep;31(9):974-8 [PMID: 17452112]
  9. Front Microbiol. 2023 Nov 30;14:1304232 [PMID: 38098663]
  10. Front Cell Infect Microbiol. 2024 Jun 14;14:1383774 [PMID: 38947126]
  11. Gut Microbes. 2021 Jan-Dec;13(1):1987783 [PMID: 34693878]
  12. J Anim Physiol Anim Nutr (Berl). 2016 Jun;100(3):413-21 [PMID: 26331590]
  13. Lett Appl Microbiol. 2021 Jun;72(6):636-668 [PMID: 32472555]
  14. Food Sci Nutr. 2021 Aug 06;9(10):5361-5369 [PMID: 34646508]
  15. J Proteome Res. 2007 May;6(5):1875-81 [PMID: 17385907]
  16. Front Immunol. 2022 Jun 30;13:916848 [PMID: 35844600]
  17. Nutrients. 2018 Jun 07;10(6): [PMID: 29880728]
  18. Foods. 2024 Mar 20;13(6): [PMID: 38540933]
  19. Animal Model Exp Med. 2022 Dec;5(4):337-349 [PMID: 35892142]
  20. Nutrients. 2024 Jul 08;16(13): [PMID: 38999911]
  21. Vet Anim Sci. 2023 Sep 07;22:100312 [PMID: 37736572]
  22. J Cell Mol Med. 2017 Jun;21(6):1217-1227 [PMID: 27997749]
  23. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  24. Nucleic Acids Res. 2023 Jan 6;51(D1):D717-D722 [PMID: 36215029]
  25. Anal Biochem. 2011 Nov 1;418(1):24-9 [PMID: 21802397]
  26. Front Nutr. 2024 Feb 08;11:1355542 [PMID: 38389798]
  27. J Immunol Res. 2017;2017:7904821 [PMID: 28316999]
  28. Dis Model Mech. 2015 Jan;8(1):1-16 [PMID: 25561744]
  29. Sci Rep. 2021 Jul 7;11(1):14030 [PMID: 34234157]
  30. Gut Microbes. 2024 Jan-Dec;16(1):2309683 [PMID: 38312099]
  31. Nat Commun. 2020 Jul 14;11(1):3514 [PMID: 32665548]
  32. Biomed Pharmacother. 2023 Sep;165:115112 [PMID: 37413903]
  33. Insects. 2022 Apr 11;13(4): [PMID: 35447818]
  34. Front Nutr. 2023 Jun 14;10:1113219 [PMID: 37388630]
  35. Mol Ecol. 2012 Dec;21(24):5908-10 [PMID: 23355979]
  36. mSystems. 2024 Feb 20;9(2):e0095023 [PMID: 38189256]
  37. J Nutr. 1999 Jul;129(7 Suppl):1402S-6S [PMID: 10395607]
  38. Foods. 2023 Oct 20;12(20): [PMID: 37893739]
  39. Nutrients. 2023 Apr 05;15(7): [PMID: 37049614]
  40. Nutrients. 2019 Oct 07;11(10): [PMID: 31591348]
  41. Foods. 2021 Nov 25;10(12): [PMID: 34945471]
  42. Foods. 2023 Sep 28;12(19): [PMID: 37835266]
  43. Prev Nutr Food Sci. 2023 Sep 30;28(3):328-334 [PMID: 37842257]
  44. FEMS Microbiol Lett. 2022 Aug 29;369(1): [PMID: 35945336]
  45. Front Nutr. 2024 Jun 05;11:1404489 [PMID: 38903626]
  46. Molecules. 2020 Dec 21;25(24): [PMID: 33371481]
  47. J Food Sci. 2023 Jan;88(1):341-355 [PMID: 36524688]
  48. Anim Nutr. 2022 Apr 21;10:111-123 [PMID: 35663372]
  49. Microbiol Res. 2024 May;282:127648 [PMID: 38367479]
  50. Gut. 2023 Sep;72(9):1635-1636 [PMID: 36788013]
  51. J Clin Invest. 2022 Apr 1;132(7): [PMID: 35362479]
  52. Nutr Res Rev. 2006 Dec;19(2):216-26 [PMID: 19079887]
  53. BMC Genomics. 2023 Aug 24;24(1):482 [PMID: 37620754]
  54. Foods. 2020 Mar 04;9(3): [PMID: 32143357]
  55. Front Vet Sci. 2015 Sep 02;2:28 [PMID: 26664957]
  56. J Clin Periodontol. 2017 Apr;44(4):344-352 [PMID: 28128467]
  57. Insects. 2023 Aug 04;14(8): [PMID: 37623400]
  58. Front Endocrinol (Lausanne). 2020 Sep 02;11:605 [PMID: 32982987]
  59. Sci Rep. 2022 May 19;12(1):8470 [PMID: 35589762]
  60. Sci Rep. 2024 Feb 29;14(1):5045 [PMID: 38424443]
  61. J Nutr. 1999 Jul;129(7 Suppl):1431S-3S [PMID: 10395613]
  62. Insects. 2022 Nov 01;13(11): [PMID: 36354831]
  63. Food Sci Nutr. 2023 Oct 06;11(12):7887-7899 [PMID: 38107146]
  64. Gut Microbes. 2021 Jan-Dec;13(1):1-21 [PMID: 33525961]
  65. Cells. 2020 Feb 28;9(3): [PMID: 32121064]
  66. Biol Res. 2014 Apr 28;47:15 [PMID: 25027489]
  67. Food Sci Nutr. 2022 Sep 20;10(11):3969-3978 [PMID: 36348800]
  68. Int J Mol Sci. 2021 Jan 12;22(2): [PMID: 33445535]
  69. MedComm (2020). 2023 Nov 04;4(6):e420 [PMID: 37929014]
  70. Crit Care. 2022 Aug 18;26(1):250 [PMID: 35982499]
  71. Foods. 2021 Sep 29;10(10): [PMID: 34681361]
  72. Nat Commun. 2023 Nov 25;14(1):7740 [PMID: 38007572]
  73. Nutrients. 2023 Aug 04;15(15): [PMID: 37571397]
  74. Food Sci Anim Resour. 2024 Jul;44(4):817-831 [PMID: 38974719]
  75. J Agric Food Chem. 2022 Apr 20;70(15):4509-4521 [PMID: 35389646]
  76. J Anim Sci Technol. 2021 Mar;63(2):417-425 [PMID: 33987615]
  77. Eur J Clin Nutr. 2009 Nov;63(11):1277-89 [PMID: 19690573]
  78. Front Nutr. 2022 Jan 03;8:634897 [PMID: 35047537]
  79. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  80. Discov Nano. 2024 May 2;19(1):77 [PMID: 38693438]

Grants

  1. PJ01673101/the Cooperative Research Program for Agriculture Science and Technology Development (Project no. PJ01673101)

Word Cloud

Created with Highcharts 10.0.0insectsgutpupabeneficialpolysaccharidesprobioticsmeatconsumptionalternativeEdibleeffectstwolarvagrowthassessfracto-oligosaccharidecontrolmicrobesgeneraamongresultsincreasingglobalpopulationenvironmentalconsequencesledexplorationsourcesproteingainedattentionsustainablenutritionallyrichinvestigatedcommonlyconsumedmicrobiotausingwhole16smetagenomesequencingdiet-associatedchangesSeven-week-oldfemaleC57BL/6JmiceadministeredediblealongFOSpositiveshamphosphatebuffersalinePBSnegativerelativeabundanceinsect-diet-associatedtotal567470speciesobserved15bacterialdifferentiallyabundantthreegroupsshowgreaterabilityregulatenext-generationparticularpromisinggastrointestinaltractshumansanimalssignificantlyenrichedsimilarsuggestparticularlycanenhancepotentiallyleadingimprovedoverallhealthhealthypopulationsImpactInsectPolysaccharidesMouseGutMicrobiota:StudyWhite-SpottedFlowerChaferLarvaSilkwormPupaBombyxmoriLactococcusPCRProtaetiabrevitarsisseulensisentomophagyfoodsafetymicrobiomeinsectpolysaccharideprebiotics

Similar Articles

Cited By