Advanced Brain Tumor Classification in MR Images Using Transfer Learning and Pre-Trained Deep CNN Models.

Rukiye Disci, Fatih Gurcan, Ahmet Soylu
Author Information
  1. Rukiye Disci: Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
  2. Fatih Gurcan: Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey. ORCID
  3. Ahmet Soylu: Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, 2815 Gj��vik, Norway.

Abstract

BACKGROUND/OBJECTIVES: Brain tumor classification is a crucial task in medical diagnostics, as early and accurate detection can significantly improve patient outcomes. This study investigates the effectiveness of pre-trained deep learning models in classifying brain MRI images into four categories: Glioma, Meningioma, Pituitary, and No Tumor, aiming to enhance the diagnostic process through automation.
METHODS: A publicly available Brain tumor MRI dataset containing 7023 images was used in this research. The study employs state-of-the-art pre-trained models, including Xception, MobileNetV2, InceptionV3, ResNet50, VGG16, and DenseNet121, which are fine-tuned using transfer learning, in combination with advanced preprocessing and data augmentation techniques. Transfer learning was applied to fine-tune the models and optimize classification accuracy while minimizing computational requirements, ensuring efficiency in real-world applications.
RESULTS: Among the tested models, Xception emerged as the top performer, achieving a weighted accuracy of 98.73% and a weighted F1 score of 95.29%, demonstrating exceptional generalization capabilities. These models proved particularly effective in addressing class imbalances and delivering consistent performance across various evaluation metrics, thus demonstrating their suitability for clinical adoption. However, challenges persist in improving recall for the Glioma and Meningioma categories, and the black-box nature of deep learning models requires further attention to enhance interpretability and trust in medical settings.
CONCLUSIONS: The findings underscore the transformative potential of deep learning in medical imaging, offering a pathway toward more reliable, scalable, and efficient diagnostic tools. Future research will focus on expanding dataset diversity, improving model explainability, and validating model performance in real-world clinical settings to support the widespread adoption of AI-driven systems in healthcare and ensure their integration into clinical workflows.

Keywords

References

  1. Cancers (Basel). 2019 Jan 18;11(1): [PMID: 30669406]
  2. PeerJ Comput Sci. 2022 Mar 3;8:e898 [PMID: 35494828]
  3. Comput Biol Med. 2023 Feb;153:106513 [PMID: 36603439]
  4. Brain Sci. 2020 Jul 29;10(8): [PMID: 32751074]
  5. Cancers (Basel). 2019 Oct 28;11(11): [PMID: 31661863]
  6. Cancers (Basel). 2019 Aug 23;11(9): [PMID: 31450799]
  7. Sensors (Basel). 2023 Jan 20;23(3): [PMID: 36772268]
  8. Diagnostics (Basel). 2022 Jul 31;12(8): [PMID: 36010200]
  9. PeerJ Comput Sci. 2023 May 18;9:e1361 [PMID: 37346688]
  10. Sensors (Basel). 2022 Oct 06;22(19): [PMID: 36236674]
  11. PeerJ Comput Sci. 2024 May 29;10:e2082 [PMID: 38855257]
  12. Life (Basel). 2023 Jan 28;13(2): [PMID: 36836705]
  13. Cancers (Basel). 2024 Oct 08;16(19): [PMID: 39410036]
  14. Soft comput. 2023;27(9):5521-5535 [PMID: 36618761]
  15. Front Comput Neurosci. 2020 Feb 07;14:6 [PMID: 32116620]
  16. Comput Biol Med. 2019 Aug;111:103345 [PMID: 31279167]
  17. J Healthc Eng. 2022 Mar 8;2022:3264367 [PMID: 35299683]
  18. Medicina (Kaunas). 2022 Aug 12;58(8): [PMID: 36013557]
  19. PeerJ Comput Sci. 2021 Jan 25;7:e344 [PMID: 33816995]
  20. Comput Med Imaging Graph. 2019 Jul;75:34-46 [PMID: 31150950]
  21. Sci Rep. 2024 Mar 27;14(1):7232 [PMID: 38538708]
  22. Cancers (Basel). 2023 Aug 18;15(16): [PMID: 37627200]
  23. Cancers (Basel). 2019 Mar 07;11(3): [PMID: 30866535]
  24. Neuro Oncol. 2024 Oct 6;26(Supplement_6):vi1-vi85 [PMID: 39371035]
  25. Brain Sci. 2020 Feb 22;10(2): [PMID: 32098333]
  26. PeerJ Comput Sci. 2024 Aug 7;10:e2234 [PMID: 39145202]
  27. Cancers (Basel). 2024 Dec 02;16(23): [PMID: 39682233]
  28. Brain Topogr. 2023 May;36(3):305-318 [PMID: 37061591]
  29. Cancers (Basel). 2024 Mar 08;16(6): [PMID: 38539435]
  30. Comput Biol Med. 2024 Sep;180:108971 [PMID: 39106672]
  31. Healthcare (Basel). 2022 Jul 13;10(7): [PMID: 35885819]

Word Cloud

Created with Highcharts 10.0.0learningmodelsdeepclinicalBrainclassificationmedicalTumorperformancemodeltumordiagnosticsstudypre-trainedbrainMRIimagesGliomaMeningiomaenhancediagnosticdatasetresearchXceptiontransferTransferaccuracyreal-worldweighteddemonstratingadoptionimprovingsettingsimagingMRBACKGROUND/OBJECTIVES:crucialtaskearlyaccuratedetectioncansignificantlyimprovepatientoutcomesinvestigateseffectivenessclassifyingfourcategories:PituitaryaimingprocessautomationMETHODS:publiclyavailablecontaining7023usedemploysstate-of-the-artincludingMobileNetV2InceptionV3ResNet50VGG16DenseNet121fine-tunedusingcombinationadvancedpreprocessingdataaugmentationtechniquesappliedfine-tuneoptimizeminimizingcomputationalrequirementsensuringefficiencyapplicationsRESULTS:Amongtestedemergedtopperformerachieving9873%F1score9529%exceptionalgeneralizationcapabilitiesprovedparticularlyeffectiveaddressingclassimbalancesdeliveringconsistentacrossvariousevaluationmetricsthussuitabilityHoweverchallengespersistrecallcategoriesblack-boxnaturerequiresattentioninterpretabilitytrustCONCLUSIONS:findingsunderscoretransformativepotentialofferingpathwaytowardreliablescalableefficienttoolsFuturewillfocusexpandingdiversityexplainabilityvalidatingsupportwidespreadAI-drivensystemshealthcareensureintegrationworkflowsAdvancedClassificationImagesUsingLearningPre-TrainedDeepCNNModels

Similar Articles

Cited By (1)