Implantable Passive Sensors for Biomedical Applications.

Panagiotis Kassanos, Emmanouel Hourdakis
Author Information
  1. Panagiotis Kassanos: School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece. ORCID
  2. Emmanouel Hourdakis: School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece. ORCID

Abstract

In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant). They allow unobtrusive and potentially continuous sensing, enabling greater specificity, early warning capabilities, and thus timely clinical intervention. Wireless remote interrogation of the implanted sensor is typically achieved using radio frequency (RF), inductive coupling or ultrasound through an external device. Two categories of implantable sensors are available, namely active and passive. Active sensors offer greater capabilities, such as on-node signal and data processing, multiplexing and multimodal sensing, while also allowing lower detection limits, the possibility to encode patient sensitive information and bidirectional communication. However, they require an energy source to operate. Battery implantation, and maintenance, remains a very important constraint in many implantable applications even though energy can be provided wirelessly through the external device, in some cases. On the other hand, passive sensors offer the possibility of detection without the need for a local energy source or active electronics. They also offer significant advantages in the areas of system complexity, cost and size. In this review, implantable passive sensor technologies will be discussed along with their communication and readout schemes. Materials, detection strategies and clinical applications of passive sensors will be described. Advantages over active sensor technologies will be highlighted, as well as critical aspects related to packaging and biocompatibility.

Keywords

References

  1. ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13467-75 [PMID: 26068389]
  2. J Orthop Res. 2019 Sep;37(9):1873-1880 [PMID: 31042313]
  3. IEEE Sens Lett. 2024 May;8(5): [PMID: 38818033]
  4. Sens Actuators B Chem. 2021 Apr 1;332: [PMID: 33542590]
  5. Nat Med. 2018 Dec;24(12):1830-1836 [PMID: 30297910]
  6. ACS Appl Bio Mater. 2023 May 15;6(5):1720-1741 [PMID: 37115912]
  7. Neurosci Res. 2017 Feb;115:1-4 [PMID: 27876581]
  8. Nat Commun. 2023 Apr 20;14(1):2263 [PMID: 37081012]
  9. J Plast Reconstr Aesthet Surg. 2009 Oct;62(10):1286-92 [PMID: 18675608]
  10. IEEE Trans Biomed Eng. 2020 May;67(5):1409-1417 [PMID: 31449002]
  11. Diabetes Technol Ther. 2020 Nov;22(11):846-852 [PMID: 32453604]
  12. J Neural Eng. 2023 May 22;20(3): [PMID: 37116505]
  13. Neuron. 2016 Aug 3;91(3):529-39 [PMID: 27497221]
  14. Biomaterials. 2007 Nov;28(31):4571-80 [PMID: 17681598]
  15. Sensors (Basel). 2023 Jun 02;23(11): [PMID: 37300009]
  16. Chem Rev. 2023 Oct 11;123(19):11722-11773 [PMID: 37729090]
  17. Sensors (Basel). 2022 Jan 27;22(3): [PMID: 35161734]
  18. ACS Appl Mater Interfaces. 2018 Apr 4;10(13):11261-11268 [PMID: 29578686]
  19. Nature. 2016 Feb 4;530(7588):71-6 [PMID: 26779949]
  20. Biomedicines. 2022 Oct 17;10(10): [PMID: 36289867]
  21. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5522-E5529 [PMID: 28652373]
  22. ACS Sens. 2019 Dec 27;4(12):3175-3185 [PMID: 31670508]
  23. Nat Commun. 2020 Nov 25;11(1):5990 [PMID: 33239608]
  24. Nat Rev Neurol. 2021 Feb;17(2):75-87 [PMID: 33244188]
  25. Sci Adv. 2023 Jun 2;9(22):eadg8602 [PMID: 37256954]
  26. Am J Cardiol. 2010 Sep 15;106(6):810-8 [PMID: 21391322]
  27. PLoS One. 2012;7(6):e38436 [PMID: 22719888]
  28. Adv Sci (Weinh). 2022 May;9(16):e2201059 [PMID: 35362243]
  29. Adv Mater. 2021 Jul;33(26):e2008062 [PMID: 34031936]
  30. IEEE Trans Biomed Eng. 1987 Apr;34(4):276-82 [PMID: 3504201]
  31. ACS Nano. 2017 Oct 24;11(10):9614-9635 [PMID: 28901746]
  32. Curr Biol. 2014 Sep 22;24(18):R878-R884 [PMID: 25247367]
  33. Biosens Bioelectron. 2019 Jan 1;123:152-159 [PMID: 30177422]
  34. Anal Chem. 2017 Jan 3;89(1):276-299 [PMID: 28105839]
  35. Mater Today Bio. 2022 May 18;15:100298 [PMID: 35634169]
  36. IEEE Trans Biomed Eng. 2023 Feb;70(2):659-670 [PMID: 35994554]
  37. IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2756-2765 [PMID: 35939455]
  38. Micromachines (Basel). 2020 Sep 27;11(10): [PMID: 32992656]
  39. Adv Healthc Mater. 2021 Sep;10(17):e2100986 [PMID: 34235886]
  40. Neuromodulation. 2023 Apr;26(3):498-506 [PMID: 36064522]
  41. Science. 2010 Mar 26;327(5973):1603-7 [PMID: 20339064]
  42. Curr Opin Neurobiol. 2018 Jun;50:64-71 [PMID: 29331738]
  43. Nat Commun. 2014;5:3266 [PMID: 24509865]
  44. IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):867-878 [PMID: 32746346]
  45. Adv Mater. 2014 Jun 18;26(23):3905-11 [PMID: 24692101]
  46. Nat Commun. 2019 Mar 8;10(1):1119 [PMID: 30850715]
  47. Laryngoscope. 1981 Nov;91(11):1812-20 [PMID: 6895397]
  48. Biosens Bioelectron. 2020 Mar 1;151:112004 [PMID: 31999570]
  49. Microsyst Nanoeng. 2017 Dec 18;3:17057 [PMID: 31057882]
  50. ACS Nano. 2022 Dec 27;16(12):21555-21564 [PMID: 36479886]
  51. Sens Actuators B Chem. 2000 Nov 15;71(1-2):112-7 [PMID: 12192686]
  52. Nat Biomed Eng. 2019 Jan;3(1):47-57 [PMID: 30932072]
  53. Adv Mater. 2023 May;35(19):e2205196 [PMID: 36044678]
  54. ACS Appl Polym Mater. 2021 Jun 11;3(6):2865-2883 [PMID: 35673585]
  55. IEEE Trans Biomed Circuits Syst. 2024 Oct;18(5):1014-1023 [PMID: 38437070]
  56. Materials (Basel). 2019 Apr 07;12(7): [PMID: 30959981]
  57. ACS Nano. 2023 Mar 28;17(6):5211-5295 [PMID: 36892156]
  58. J Microelectromech Syst. 2011 Oct 1;20(5):1119-1130 [PMID: 22267898]
  59. ACS Appl Bio Mater. 2021 Jan 18;4(1):163-194 [PMID: 33842859]
  60. Nature. 2024 May;629(8011):335-340 [PMID: 38658759]
  61. Nano Lett. 2012 Jun 13;12(6):2710-6 [PMID: 22546049]
  62. IEEE J Biomed Health Inform. 2015 May;19(3):930-7 [PMID: 25838532]
  63. Sensors (Basel). 2009;9(12):9444-51 [PMID: 22303132]
  64. Adv Healthc Mater. 2020 Sep;9(18):e2000790 [PMID: 32790033]
  65. Chem Rev. 2024 Feb 14;124(3):860-888 [PMID: 38291556]
  66. Sci Adv. 2024 Apr 19;10(16):eadj0268 [PMID: 38640247]
  67. IEEE Trans Biomed Circuits Syst. 2021 Feb;15(1):102-110 [PMID: 33471767]
  68. Microsyst Nanoeng. 2024 Jan 17;10:8 [PMID: 38261856]
  69. Adv Mater. 2010 May 18;22(19):2108-24 [PMID: 20564250]
  70. IEEE Trans Biomed Eng. 2021 Mar;68(3):747-758 [PMID: 32780694]
  71. IEEE Trans Biomed Eng. 2023 Mar;70(3):1000-1011 [PMID: 36112548]
  72. Adv Mater. 2023 Dec;35(52):e2303197 [PMID: 37358398]
  73. IEEE Sens J. 2017;17(22):7394-7404 [PMID: 29422780]
  74. Cancers (Basel). 2021 May 17;13(10): [PMID: 34067552]
  75. J Neural Eng. 2021 Feb 24;18(2):025002 [PMID: 33624611]
  76. Natl Sci Rev. 2022 Jan 29;9(10):nwac016 [PMID: 36196123]
  77. J Control Release. 2013 Aug 10;169(3):341-7 [PMID: 23298616]
  78. Adv Mater. 2020 Apr;32(15):e1902767 [PMID: 31490582]
  79. Neuromodulation. 2022 Apr;25(3):309-315 [PMID: 35396067]
  80. Opt Express. 2010 Mar 1;18(5):5000-7 [PMID: 20389511]
  81. Sci Rep. 2014 Dec 01;4:7254 [PMID: 25434843]
  82. Biomed Microdevices. 2013 Oct;15(5):737-49 [PMID: 23559403]
  83. Sensors (Basel). 2023 Feb 11;23(4): [PMID: 36850641]
  84. Micromachines (Basel). 2018 Sep 09;9(9): [PMID: 30424382]
  85. Prim Care Diabetes. 2023 Oct 27;: [PMID: 39492046]
  86. Anal Chem. 2020 Oct 6;92(19):13110-13117 [PMID: 32864958]
  87. Biosens Bioelectron. 2019 Aug 15;139:111336 [PMID: 31128477]
  88. Lancet. 2011 Feb 19;377(9766):658-66 [PMID: 21315441]
  89. J Orthop Res. 2015 Oct;33(10):1439-46 [PMID: 26174472]
  90. Sensors (Basel). 2013 Jun 10;13(6):7546-69 [PMID: 23752565]
  91. Sensors (Basel). 2014 Jan 17;14(1):1691-704 [PMID: 24445416]
  92. Anal Chem. 2006 Nov 1;78(21):7370-7 [PMID: 17128516]
  93. IEEE Trans Compon Packaging Manuf Technol. 2015 Sep;5(9):1201-1218 [PMID: 27668126]
  94. Nat Commun. 2014 Oct 06;5:5028 [PMID: 25284074]
  95. Adv Sci (Weinh). 2024 Nov 11;:e2409914 [PMID: 39526831]
  96. ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43199-43211 [PMID: 39120580]
  97. Science. 2024 Aug 16;385(6710):731-737 [PMID: 39146401]
  98. Biomed Microdevices. 2009 Jun;11(3):529-38 [PMID: 18335316]
  99. Ann Biomed Eng. 2009 Nov;37(11):2390-401 [PMID: 19657742]
  100. Ther Adv Cardiovasc Dis. 2019 Jan-Dec;13:1753944719826826 [PMID: 30803405]
  101. IEEE J Biomed Health Inform. 2015 May;19(3):901-9 [PMID: 25826811]
  102. Sci Rep. 2023 Oct 23;13(1):18122 [PMID: 37872272]
  103. Adv Healthc Mater. 2020 Aug;9(16):e2000942 [PMID: 32597568]
  104. Health Econ Rev. 2022 Jul 6;12(1):35 [PMID: 35792960]
  105. Science. 2012 Sep 28;337(6102):1640-4 [PMID: 23019646]
  106. J Neurosci Methods. 2020 Mar 1;333:108562 [PMID: 31862376]
  107. Adv Mater. 2017 Jul;29(27): [PMID: 28417536]
  108. IEEE Trans Biomed Circuits Syst. 2017 Oct;11(5):1148-1159 [PMID: 28885160]
  109. Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17385-9 [PMID: 25422476]

MeSH Term

Humans
Prostheses and Implants
Wireless Technology
Biosensing Techniques

Word Cloud

Created with Highcharts 10.0.0sensorsimplantablecouplingpassivesensingsensoractiveofferdetectionenergywillallowgreatercapabilitiesclinicalinductiveexternaldevicealsopossibilitycommunicationsourceapplicationstechnologiesrecentyearsextensivelyresearchedsincelocalizedareainterestegwithinvicinitysurgicalsiteimplantunobtrusivepotentiallycontinuousenablingspecificityearlywarningthustimelyinterventionWirelessremoteinterrogationimplantedtypicallyachievedusingradiofrequencyRFultrasoundTwocategoriesavailablenamelyActiveon-nodesignaldataprocessingmultiplexingmultimodalallowinglowerlimitsencodepatientsensitiveinformationbidirectionalHoweverrequireoperateBatteryimplantationmaintenanceremainsimportantconstraintmanyeventhoughcanprovidedwirelesslycaseshandwithoutneedlocalelectronicssignificantadvantagesareassystemcomplexitycostsizereviewdiscussedalongreadoutschemesMaterialsstrategiesdescribedAdvantageshighlightedwellcriticalaspectsrelatedpackagingbiocompatibilityImplantablePassiveSensorsBiomedicalApplicationscapacitivediaphragmgalvanicradiativeultrasonic

Similar Articles

Cited By