An eco-evolutionary perspective on antimicrobial resistance in the context of One Health.

Misshelle Bustamante, Siyu Mei, Ines M Daras, G S van Doorn, Joana Falcao Salles, Marjon G J de Vos
Author Information
  1. Misshelle Bustamante: University of Groningen - GELIFES, Groningen, the Netherlands.
  2. Siyu Mei: University of Groningen - GELIFES, Groningen, the Netherlands.
  3. Ines M Daras: University of Groningen - GELIFES, Groningen, the Netherlands.
  4. G S van Doorn: University of Groningen - GELIFES, Groningen, the Netherlands.
  5. Joana Falcao Salles: University of Groningen - GELIFES, Groningen, the Netherlands.
  6. Marjon G J de Vos: University of Groningen - GELIFES, Groningen, the Netherlands.

Abstract

The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution. We emphasize the need for an eco-evolutionary approach within the One Health framework and highlight the importance of horizontal gene transfer and microbiome interactions for increased understanding of the emergence and spread of antimicrobial resistance.

Keywords

References

  1. Nature. 1983 Apr 21;302(5910):725-6 [PMID: 6835408]
  2. Nat Rev Microbiol. 2010 Apr;8(4):260-71 [PMID: 20208551]
  3. Nat Microbiol. 2016 Apr 11;1(6):16044 [PMID: 27572835]
  4. Trop Med Infect Dis. 2019 May 31;4(2): [PMID: 31159338]
  5. Lancet Infect Dis. 2016 Feb;16(2):161-8 [PMID: 26603172]
  6. Nature. 2016 Jul 7;535(7610):144-7 [PMID: 27362236]
  7. Appl Environ Microbiol. 1996 Feb;62(2):515-21 [PMID: 8593052]
  8. ISME J. 2022 Mar;16(3):812-821 [PMID: 34628478]
  9. Nature. 2010 Sep 2;467(7311):82-5 [PMID: 20811456]
  10. Commun Biol. 2023 Mar 27;6(1):331 [PMID: 36973402]
  11. Front Microbiol. 2021 Oct 11;12:717809 [PMID: 34707579]
  12. Nature. 2004 Jan 1;427(6969):72-4 [PMID: 14688795]
  13. mSphere. 2022 Oct 26;7(5):e0031822 [PMID: 35972133]
  14. Int J Med Microbiol. 2013 Aug;303(6-7):298-304 [PMID: 23499304]
  15. ISME J. 2021 Apr;15(4):939-948 [PMID: 33219299]
  16. Adv Clin Chem. 2012;56:75-104 [PMID: 22397029]
  17. ISME J. 2016 Mar;10(3):778-87 [PMID: 26505830]
  18. Front Microbiol. 2017 Sep 25;8:1832 [PMID: 28993764]
  19. Antimicrob Agents Chemother. 2010 May;54(5):2085-95 [PMID: 20176903]
  20. Mol Microbiol. 2012 Jul;85(1):142-51 [PMID: 22646234]
  21. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  22. FEMS Microbiol Ecol. 2000 Jan 1;31(1):39-45 [PMID: 10620717]
  23. NPJ Biofilms Microbiomes. 2021 Oct 7;7(1):78 [PMID: 34620879]
  24. ISME J. 2018 Jun;12(6):1582-1593 [PMID: 29563570]
  25. Global Health. 2023 Apr 20;19(1):27 [PMID: 37081463]
  26. Curr Opin Microbiol. 2010 Oct;13(5):558-64 [PMID: 20920882]
  27. NPJ Biofilms Microbiomes. 2021 Jan 11;7(1):3 [PMID: 33431848]
  28. ISME J. 2023 Sep;17(9):1495-1503 [PMID: 37380830]
  29. Nat Commun. 2018 Mar 21;9(1):1179 [PMID: 29563494]
  30. Lancet Microbe. 2023 Nov;4(11):e943-e952 [PMID: 37858320]
  31. Microbiome. 2022 Dec 12;10(1):219 [PMID: 36503688]
  32. BMJ. 2003 Nov 22;327(7425):1209-13 [PMID: 14630759]
  33. Antibiotics (Basel). 2015 Nov 13;4(4):567-604 [PMID: 27025641]
  34. Ther Adv Infect Dis. 2016 Feb;3(1):15-21 [PMID: 26862399]
  35. FEMS Microbes. 2024 Jul 27;5:xtae023 [PMID: 39170752]
  36. Med Pharm Rep. 2020 Jul;93(3):231-240 [PMID: 32832887]
  37. Nat Rev Microbiol. 2005 Sep;3(9):675-8 [PMID: 16145755]
  38. New Phytol. 2003 Mar;157(3):525-537 [PMID: 33873398]
  39. FEMS Microbiol Ecol. 2020 May 1;96(5): [PMID: 32109282]
  40. Antimicrob Agents Chemother. 2017 Oct 24;61(11): [PMID: 28893783]
  41. Nat Commun. 2022 Mar 3;13(1):1131 [PMID: 35241674]
  42. Mol Biol Evol. 2003 Oct;20(10):1598-602 [PMID: 12777514]
  43. Trends Microbiol. 2018 Jun;26(6):471-483 [PMID: 29191398]
  44. ISME Commun. 2023 Aug 28;3(1):90 [PMID: 37640834]
  45. PLoS Biol. 2023 Oct 17;21(10):e3002329 [PMID: 37847672]
  46. J Appl Microbiol. 2022 Nov;133(5):2902-2914 [PMID: 35882476]
  47. Appl Environ Microbiol. 2023 Jun 28;89(6):e0017023 [PMID: 37199629]
  48. Microbiol Spectr. 2023 Sep 19;:e0110123 [PMID: 37724865]
  49. Microbiome. 2021 Sep 30;9(1):196 [PMID: 34593032]
  50. mBio. 2021 Oct 26;12(5):e0260821 [PMID: 34634938]
  51. Trends Microbiol. 2022 Jul;30(7):609-611 [PMID: 35618541]
  52. BMC Evol Biol. 2013 Feb 22;13:50 [PMID: 23433244]
  53. Mol Syst Biol. 2013 Aug 06;9:683 [PMID: 23917989]
  54. PLoS Biol. 2021 Oct 13;19(10):e3001225 [PMID: 34644303]
  55. Environ Sci Pollut Res Int. 2022 Aug;29(39):59159-59172 [PMID: 35381918]
  56. Front Microbiol. 2011 Jul 26;2:158 [PMID: 21845185]
  57. PLoS Biol. 2015 Oct 07;13(10):e1002266 [PMID: 26444324]
  58. Nature. 2011 Aug 31;477(7365):457-61 [PMID: 21881561]
  59. Elife. 2017 Nov 01;6: [PMID: 29091031]
  60. Philos Trans R Soc Lond B Biol Sci. 2015 Jun 5;370(1670):20140083 [PMID: 25918441]
  61. Front Cell Dev Biol. 2020 May 19;8:229 [PMID: 32509768]
  62. Mol Biol Evol. 2018 Sep 1;35(9):2230-2239 [PMID: 29905872]
  63. Curr Microbiol. 2024 Apr 20;81(6):148 [PMID: 38642082]
  64. Environ Health Perspect. 2013 Sep;121(9):993-1001 [PMID: 23838256]
  65. ISME J. 2020 May;14(5):1170-1181 [PMID: 32020051]
  66. Future Microbiol. 2012 Sep;7(9):1061-72 [PMID: 22953707]
  67. J Bacteriol. 2005 Aug;187(15):5341-6 [PMID: 16030228]
  68. Environ Geochem Health. 2024 Jan 15;46(1):26 [PMID: 38225519]
  69. Nat Ecol Evol. 2024 Nov;8(11):2097-2112 [PMID: 39198572]
  70. PLoS Biol. 2022 Nov 9;20(11):e3001847 [PMID: 36350849]
  71. mSystems. 2024 Mar 19;9(3):e0119323 [PMID: 38376169]
  72. Nat Rev Microbiol. 2005 Sep;3(9):700-10 [PMID: 16138098]
  73. Genetics. 2009 Oct;183(2):539-46, 1SI-2SI [PMID: 19652179]
  74. J Hazard Mater. 2015 Dec 30;300:121-128 [PMID: 26164069]
  75. Front Microbiol. 2019 Apr 17;10:832 [PMID: 31057528]
  76. Clin Microbiol Rev. 2018 Aug 1;31(4): [PMID: 30068738]
  77. Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2212147120 [PMID: 37023131]
  78. Nat Rev Microbiol. 2005 Sep;3(9):722-32 [PMID: 16138100]
  79. Nat Commun. 2017 Nov 22;8(1):1689 [PMID: 29162798]
  80. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6): [PMID: 33526659]
  81. mBio. 2022 Oct 26;13(5):e0185122 [PMID: 36154183]
  82. Mol Biol Evol. 2023 Oct 4;40(10): [PMID: 37788575]
  83. ISME J. 2023 Oct;17(10):1765-1773 [PMID: 37558861]
  84. Genes (Basel). 2021 Aug 06;12(8): [PMID: 34440394]
  85. PLoS Comput Biol. 2016 Oct 20;12(10):e1005098 [PMID: 27764095]
  86. Science. 2018 May 18;360(6390):733-738 [PMID: 29773743]
  87. Nat Commun. 2021 May 11;12(1):2653 [PMID: 33976161]
  88. NPJ Antimicrob Resist. 2024;2(1):27 [PMID: 39364333]
  89. Commun Biol. 2024 Jun 8;7(1):706 [PMID: 38851788]
  90. Elife. 2023 Mar 24;12: [PMID: 36961866]
  91. ISME J. 2019 Dec;13(12):2927-2937 [PMID: 31384011]
  92. Curr Opin Pharmacol. 2011 Oct;11(5):477-85 [PMID: 21840259]
  93. Science. 2019 Sep 13;365(6458):1082-1083 [PMID: 31515374]
  94. Trends Microbiol. 2005 Jan;13(1):34-40 [PMID: 15639630]
  95. Antimicrob Agents Chemother. 2012 Jan;56(1):559-62 [PMID: 22083465]
  96. Lancet Planet Health. 2021 Dec;5(12):e893-e904 [PMID: 34774223]
  97. Proc Biol Sci. 2021 Nov 10;288(1962):20212027 [PMID: 34727719]
  98. Evol Appl. 2015 Mar;8(3):284-95 [PMID: 25861386]
  99. Commun Biol. 2022 Jul 28;5(1):752 [PMID: 35902767]
  100. Science. 2009 May 22;324(5930):1034 [PMID: 19460999]
  101. Environ Res. 2024 Feb 15;243:117801 [PMID: 38043895]
  102. Front Microbiol. 2020 Feb 06;11:62 [PMID: 32117108]
  103. Nat Chem Biol. 2015 Mar;11(3):182-8 [PMID: 25689336]
  104. Nat Microbiol. 2022 Apr;7(4):542-555 [PMID: 35314781]
  105. Cell Mol Life Sci. 2004 Sep;61(17):2200-23 [PMID: 15338052]
  106. Environ Sci Process Impacts. 2020 May 1;22(5):1110-1124 [PMID: 32236187]
  107. Environ Sci Technol. 2020 Jul 21;54(14):8770-8778 [PMID: 32551597]
  108. Environ Sci Pollut Res Int. 2021 Mar;28(10):12178-12189 [PMID: 33394421]
  109. Microbiology (Reading). 2021 Sep;167(9): [PMID: 34494951]
  110. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735): [PMID: 29061896]
  111. NPJ Biofilms Microbiomes. 2022 Dec 9;8(1):95 [PMID: 36481746]
  112. Nat Rev Microbiol. 2006 Jan;4(1):36-45 [PMID: 16357859]
  113. mBio. 2018 Apr 24;9(2): [PMID: 29691332]
  114. Sci Rep. 2018 Jun 21;8(1):9451 [PMID: 29930350]
  115. PLoS Biol. 2016 Dec 27;14(12):e2000631 [PMID: 28027306]
  116. Front Microbiol. 2019 Aug 20;10:1916 [PMID: 31481945]
  117. Clin Microbiol Rev. 2004 Jan;17(1):14-56 [PMID: 14726454]
  118. Microbiol Mol Biol Rev. 2014 Jun;78(2):257-77 [PMID: 24847022]

Word Cloud

Created with Highcharts 10.0.0antimicrobialresistanceHealthOneinteractionsapproachincreasedperspectivedifferentevolutioneco-evolutionarysciencesmustersgrowingconcernsdueuseantibioticshealthcareagricultureconsequenceshumanlivestockenvironmentalhealthexplorecurrentknowledgelevelsbiologicalorganizationgeneticecologicalaffectdiscussrolecontextsnaturalsystemsweakselectionhuman-influencedenvironmentsimposestrongpressuretowardemphasizeneedwithinframeworkhighlightimportancehorizontalgenetransfermicrobiomeunderstandingemergencespreadcontextBiologicalEvolutionarybiologyMicrobiology

Similar Articles

Cited By