Genome-wide association analysis of flowering date in a collection of cultivated olive tree.

Laila Aqbouch, Omar Abou-Saaid, Gautier Sarah, Lison Zunino, Vincent Segura, Pierre Mournet, Florelle Bonal, Hayat Zaher, Ahmed El Bakkali, Philippe Cubry, Evelyne Costes, Bouchaib Khadari
Author Information
  1. Laila Aqbouch: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  2. Omar Abou-Saaid: Université Cadi Ayyad, Laboratoire Biotechnologie et Bio-ingénierie Moléculaire, FST Guéliz, Marrakech, Morocco. ORCID
  3. Gautier Sarah: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  4. Lison Zunino: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  5. Vincent Segura: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  6. Pierre Mournet: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  7. Florelle Bonal: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
  8. Hayat Zaher: INRA, UR Amélioration des Plantes, Marrakech, Morocco.
  9. Ahmed El Bakkali: INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknès, Morocco.
  10. Philippe Cubry: DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France. ORCID
  11. Evelyne Costes: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID
  12. Bouchaib Khadari: UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France. ORCID

Abstract

Flowering date in perennial fruit trees is an important trait for fruit production. Depending on the winter and spring temperatures, flowering of olive may be advanced, delayed, or even suppressed. Deciphering the genetic control of flowering date is thus key to help selecting cultivars better adapted to the current climate context. Here, we investigated the genetic determinism of full flowering date stage in cultivated olive based on capture sequencing data of 318 genotypes from the worldwide olive germplasm bank of Marrakech, Morocco. The genetic structure of this collection was organized in three clusters that were broadly attributed to eastern, central, and western Mediterranean regions, based on the presumed origin of genotypes. Flowering dates, collected over 7 years, were used to estimate the genotypic best linear unbiased predictors, which were then analyzed in a genome-wide association study. Loci with small effects were significantly associated with the studied trait, by either a single- or a multi-locus approach. The three most robust loci were located on chromosomes 01 and 04, and on a scaffold, and explained 7.1%, 6.2%, and 6.5% of the trait variance, respectively. A significantly higher accuracy in the best linear unbiased predictors of flowering date prediction was reported with Ridge- compared to LASSO-based genomic prediction model. Along with genomic association results, this suggests a complex polygenic determinism of flowering date, as seen in many other fruit perennials. These results and the screening of associated regions for candidate genes open perspectives for further studies and breeding programs targeting flowering date.

References

  1. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  2. Front Plant Sci. 2024 Feb 21;15:1352757 [PMID: 38455730]
  3. New Phytol. 2015 Apr;206(1):436-447 [PMID: 25420413]
  4. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  5. Nat Genet. 2012 Jun 17;44(7):825-30 [PMID: 22706313]
  6. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  7. Front Plant Sci. 2023 Mar 02;14:1142974 [PMID: 36938044]
  8. Int J Biometeorol. 2014 Aug;58(6):1195-206 [PMID: 23958788]
  9. New Phytol. 2001 Mar;149(3):369-399 [PMID: 33873342]
  10. PLoS One. 2019 Oct 17;14(10):e0223716 [PMID: 31622375]
  11. Sci Rep. 2018 Oct 26;8(1):15877 [PMID: 30367101]
  12. Heredity (Edinb). 2010 Oct;105(4):333-40 [PMID: 20145669]
  13. Plant Methods. 2013 Jul 22;9:29 [PMID: 23876160]
  14. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  15. BMC Genomics. 2017 Jan 11;18(1):69 [PMID: 28077077]
  16. Nature. 2010 Jun 3;465(7298):627-31 [PMID: 20336072]
  17. J Exp Bot. 2016 Apr;67(9):2875-88 [PMID: 27034326]
  18. Sci Rep. 2019 Dec 10;9(1):18764 [PMID: 31822760]
  19. Theor Appl Genet. 1975 Jan;46(2):87-99 [PMID: 24419730]
  20. Plant Cell Environ. 2017 Aug;40(8):1263-1280 [PMID: 28103403]
  21. BMC Biol. 2020 Oct 26;18(1):148 [PMID: 33100219]
  22. Genome Biol. 2018 Jun 11;19(1):77 [PMID: 29890997]
  23. Plants (Basel). 2022 Mar 29;11(7): [PMID: 35406901]
  24. Am J Hum Genet. 2023 Feb 2;110(2):179-194 [PMID: 36634672]
  25. Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531 [PMID: 36408920]
  26. Plant J. 2023 Oct;116(1):303-319 [PMID: 37164361]
  27. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  28. Heredity (Edinb). 2012 Nov;109(5):280-92 [PMID: 22828898]
  29. PLoS Comput Biol. 2022 Jan 24;18(1):e1009659 [PMID: 35073307]
  30. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  31. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  32. Plant Genome. 2020 Mar;13(1):e20010 [PMID: 33016633]
  33. Genetics. 2017 Aug;206(4):2085-2103 [PMID: 28550018]
  34. Nat Genet. 2017 Sep;49(9):1385-1391 [PMID: 28714975]
  35. PLoS One. 2015 Jun 08;10(6):e0129023 [PMID: 26053627]
  36. Hortic Res. 2022 Dec 02;10(2):uhac263 [PMID: 36793754]
  37. Mol Ecol. 2018 Oct;27(20):4121-4135 [PMID: 30107060]
  38. Evol Appl. 2017 Jun 29;10(9):860-866 [PMID: 29151877]
  39. Genetics. 2006 Jul;173(3):1761-76 [PMID: 16648593]
  40. Genetics. 2014 Apr;196(4):973-83 [PMID: 24496008]
  41. PLoS One. 2024 Jan 17;19(1):e0295043 [PMID: 38232071]
  42. Theor Appl Genet. 2019 Jun;132(6):1733-1744 [PMID: 30783744]
  43. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  44. Nat Commun. 2017 Aug 15;8(1):249 [PMID: 28811498]
  45. PLoS One. 2013 May 17;8(5):e62831 [PMID: 23690957]
  46. Front Genet. 2019 Aug 21;10:755 [PMID: 31497033]
  47. J Dairy Sci. 2008 Nov;91(11):4414-23 [PMID: 18946147]
  48. Genomics Inform. 2012 Jun;10(2):117-22 [PMID: 23105939]
  49. Genetics. 2014 Oct;198(2):483-95 [PMID: 25009151]
  50. Biochem Genet. 2016 Aug;54(4):506-533 [PMID: 27209034]
  51. Sci Rep. 2020 Oct 1;10(1):16308 [PMID: 33004874]
  52. Genetics. 2008 Apr;178(4):2289-303 [PMID: 18430950]

Word Cloud

Created with Highcharts 10.0.0datefloweringolivefruittraitgeneticassociationFloweringdeterminismcultivatedbasedgenotypescollectionthreeregions7bestlinearunbiasedpredictorssignificantlyassociated6predictiongenomicresultsperennialtreesimportantproductionDependingwinterspringtemperaturesmayadvanceddelayedevensuppressedDecipheringcontrolthuskeyhelpselectingcultivarsbetteradaptedcurrentclimatecontextinvestigatedfullstagecapturesequencingdata318worldwidegermplasmbankMarrakechMoroccostructureorganizedclustersbroadlyattributedeasterncentralwesternMediterraneanpresumedorigindatescollectedyearsusedestimategenotypicanalyzedgenome-widestudyLocismalleffectsstudiedeithersingle-multi-locusapproachrobustlocilocatedchromosomes0104scaffoldexplained1%2%5%variancerespectivelyhigheraccuracyreportedRidge-comparedLASSO-basedmodelAlongsuggestscomplexpolygenicseenmanyperennialsscreeningcandidategenesopenperspectivesstudiesbreedingprogramstargetingGenome-wideanalysistree

Similar Articles

Cited By