A Novel Silver-Ruthenium-Based Antimicrobial Kills Gram-Negative Bacteria Through Oxidative Stress-Induced Macromolecular Damage.

Patrick Ofori Tawiah, Luca Finn Gaessler, Greg M Anderson, Emmanuel Parkay Oladokun, Jan-Ulrik Dahl
Author Information
  1. Patrick Ofori Tawiah: School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790.
  2. Luca Finn Gaessler: School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790.
  3. Greg M Anderson: School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790.
  4. Emmanuel Parkay Oladokun: School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790.
  5. Jan-Ulrik Dahl: School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790. ORCID

Abstract

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed. These include silver nanoparticles, which have been used as antimicrobial surface-coatings on catheters to eliminate biofilm-forming uropathogens and reduce the risk of nosocomial infections. AGXX is a promising silver coating that presumably kills Bacteria through the generation of reactive oxygen species (ROS) but is more potent than silver. However, neither is AGXX's mode of action fully understood, nor have its effects on Gram-negative Bacteria or bacterial response and defense mechanisms towards AGXX been studied in detail. Here, we report that the bactericidal effects of AGXX are primarily based on ROS formation, as supplementation of the media with a ROS scavenger completely abolished AGXX-induced killing. We further show that AGXX impairs the integrity of the bacterial cell envelope and causes substantial protein aggregation and DNA damage already at sublethal concentrations. ExPEC strains appear to be more resistant to the proteotoxic effects of AGXX compared to non-pathogenic , indicating improved defense capabilities of the uropathogen. Global transcriptomic studies of AGXX-stressed ExPEC revealed a strong oxidative stress response, perturbations in metal homeostasis, as well as the activation of heat shock and DNA damage responses. Finally, we present evidence that ExPEC counter AGXX damage through the production of the chaperone polyphosphate.

References

  1. Antibiotics (Basel). 2018 Aug 22;7(3): [PMID: 30135366]
  2. iScience. 2024 Jun 08;27(7):110215 [PMID: 38993675]
  3. Nano Lett. 2021 Mar 10;21(5):1992-2000 [PMID: 33616397]
  4. mBio. 2013 Feb 12;4(1):e00023-13 [PMID: 23404396]
  5. mBio. 2021 Aug 31;12(4):e0147721 [PMID: 34340551]
  6. Lancet Infect Dis. 2018 Oct;18(10):1138-1149 [PMID: 30126643]
  7. Folia Microbiol (Praha). 2014 Sep;59(5):381-9 [PMID: 24531869]
  8. Appl Environ Microbiol. 2008 Apr;74(7):2171-8 [PMID: 18245232]
  9. Nat Rev Microbiol. 2025 Feb;23(2):72-86 [PMID: 39251839]
  10. Free Radic Biol Med. 2001 Dec 1;31(11):1352-9 [PMID: 11728806]
  11. Biomolecules. 2023 Apr 17;13(4): [PMID: 37189429]
  12. Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2304841120 [PMID: 37523569]
  13. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  14. Microbiol Res. 2018 Mar;207:53-64 [PMID: 29458868]
  15. Nat Commun. 2021 Jun 7;12(1):3331 [PMID: 34099682]
  16. J Bacteriol. 2009 Jul;191(13):4478-81 [PMID: 19376858]
  17. Nat Rev Microbiol. 2015 May;13(5):269-84 [PMID: 25853778]
  18. J Bacteriol. 1996 Mar;178(5):1394-400 [PMID: 8631717]
  19. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9636-41 [PMID: 10931957]
  20. J Biol Chem. 1990 Jul 15;265(20):11734-9 [PMID: 2164013]
  21. Front Microbiol. 2021 Oct 26;12:764733 [PMID: 34764949]
  22. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11210-5 [PMID: 9326588]
  23. Sci Adv. 2021 Dec 24;7(52):eabk0233 [PMID: 34936433]
  24. J Bacteriol. 2004 Dec;186(24):8499-507 [PMID: 15576800]
  25. Antimicrob Agents Chemother. 2000 Mar;44(3):676-81 [PMID: 10681337]
  26. Curr Pharm Des. 2018;24(8):896-903 [PMID: 29468956]
  27. Chem Res Toxicol. 2006 Apr;19(4):491-505 [PMID: 16608160]
  28. Nat Microbiol. 2017 Jan 23;2:16267 [PMID: 28112760]
  29. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  30. Infect Immun. 2020 Jun 22;88(7): [PMID: 32152198]
  31. Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544 [PMID: 29790989]
  32. J Mol Biol. 2007 Aug 3;371(1):19-24 [PMID: 17583735]
  33. J Biol Chem. 2013 May 10;288(19):13789-98 [PMID: 23536188]
  34. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  35. Mol Cell. 2018 May 17;70(4):614-627.e7 [PMID: 29754824]
  36. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3076-81 [PMID: 18287048]
  37. Annu Rev Microbiol. 2013;67:141-60 [PMID: 23768204]
  38. J Mol Biol. 2015 Apr 10;427(7):1549-63 [PMID: 25698115]
  39. J Biol Chem. 1992 Nov 5;267(31):22556-61 [PMID: 1331061]
  40. PLoS Biol. 2018 Aug 28;16(8):e2003853 [PMID: 30153247]
  41. PLoS Pathog. 2010 Nov 11;6(11):e1001187 [PMID: 21085611]
  42. Nat Rev Microbiol. 2021 Jan;19(1):37-54 [PMID: 32826992]
  43. Langmuir. 2011 Apr 5;27(7):4020-8 [PMID: 21401066]
  44. Nat Commun. 2020 Aug 12;11(1):4035 [PMID: 32788578]
  45. mBio. 2022 Oct 26;13(5):e0192622 [PMID: 36073817]
  46. J Biomed Mater Res. 2000 Dec 15;52(4):662-8 [PMID: 11033548]
  47. mBio. 2018 Nov 20;9(6): [PMID: 30459190]
  48. Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111578 [PMID: 33321624]
  49. Nat Commun. 2014 Dec 17;5:5804 [PMID: 25517874]
  50. mSphere. 2024 Oct 29;9(10):e0068624 [PMID: 39365057]
  51. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90 [PMID: 10758151]
  52. Microorganisms. 2021 Dec 28;10(1): [PMID: 35056511]
  53. EMBO J. 1999 Dec 15;18(24):6934-49 [PMID: 10601016]
  54. Front Microbiol. 2018 Dec 11;9:3037 [PMID: 30619128]
  55. Annu Rev Biochem. 2009;78:605-47 [PMID: 19344251]
  56. Cell. 2008 Nov 14;135(4):691-701 [PMID: 19013278]
  57. J Bacteriol. 1984 May;158(2):551-61 [PMID: 6327610]
  58. J Biol Chem. 1975 Sep 25;250(18):7377-87 [PMID: 126236]
  59. Appl Environ Microbiol. 1988 Dec;54(12):2894-901 [PMID: 16347788]
  60. J Mater Sci Mater Med. 2013 Jun;24(6):1465-71 [PMID: 23440430]
  61. J Bacteriol. 2003 Jul;185(13):3804-12 [PMID: 12813074]
  62. Adv Pharmacol Sci. 2010;2010:910686 [PMID: 21188244]
  63. Front Microbiol. 2021 Aug 12;12:731564 [PMID: 34456898]
  64. Front Immunol. 2021 Apr 27;12:667343 [PMID: 33995399]
  65. Sci Transl Med. 2013 Jun 19;5(190):190ra81 [PMID: 23785037]
  66. J Enzyme Inhib Med Chem. 2020 Dec;35(1):1224-1232 [PMID: 32420773]
  67. J Bacteriol. 1998 Apr;180(8):2186-93 [PMID: 9555903]
  68. Int J Food Microbiol. 2000 Apr 10;55(1-3):3-9 [PMID: 10791710]
  69. J Mol Biol. 2015 Apr 10;427(7):1537-48 [PMID: 25681016]
  70. Mol Cell. 2016 Sep 1;63(5):768-80 [PMID: 27570072]
  71. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12879-84 [PMID: 16912116]
  72. Front Microbiol. 2018 Feb 15;9:221 [PMID: 29497410]
  73. Curr Opin Microbiol. 2015 Apr;24:1-6 [PMID: 25589044]
  74. mBio. 2020 Jul 28;11(4): [PMID: 32723918]
  75. Environ Sci Technol. 2011 Feb 15;45(4):1177-83 [PMID: 21218770]
  76. Nat Nanotechnol. 2018 Jan;13(1):65-71 [PMID: 29203912]
  77. mSphere. 2020 Dec 16;5(6): [PMID: 33328353]
  78. J Bacteriol. 2023 Oct 26;205(10):e0006423 [PMID: 37791752]
  79. Appl Environ Microbiol. 2011 Mar;77(5):1541-7 [PMID: 21193661]
  80. J Bacteriol. 2001 Dec;183(24):7173-81 [PMID: 11717276]
  81. mBio. 2018 Nov 27;9(6): [PMID: 30482828]
  82. Front Cell Infect Microbiol. 2017 Feb 15;7:39 [PMID: 28261568]
  83. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  84. J Mol Biol. 2018 Oct 19;430(21):4195-4208 [PMID: 30130556]
  85. Mol Microbiol. 2017 Nov;106(3):335-350 [PMID: 28795780]
  86. J Mol Biol. 2009 Feb 13;386(1):178-89 [PMID: 19101567]
  87. mSphere. 2023 Oct 24;8(5):e0019023 [PMID: 37646510]
  88. mBio. 2021 Jun 29;12(3):e0059221 [PMID: 34126765]
  89. Annu Rev Biochem. 1999;68:89-125 [PMID: 10872445]
  90. Elife. 2013 Oct 29;2:e01222 [PMID: 24171103]
  91. J Bacteriol. 2009 Jan;191(1):347-54 [PMID: 18952797]
  92. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  93. J Ind Microbiol Biotechnol. 2006 Jul;33(7):627-34 [PMID: 16761169]
  94. NPJ Biofilms Microbiomes. 2018 Feb 27;4:4 [PMID: 29507749]
  95. J Vis Exp. 2021 Jun 29;(172): [PMID: 34279493]
  96. J Bacteriol. 1991 Sep;173(18):5808-21 [PMID: 1653221]
  97. Mater Sci Eng C Mater Biol Appl. 2015 May;50:1-11 [PMID: 25746238]
  98. Front Public Health. 2022 Jul 27;10:888205 [PMID: 35968451]
  99. Mol Immunol. 2019 Apr;108:56-67 [PMID: 30784763]
  100. Cell. 2014 Apr 24;157(3):539-48 [PMID: 24766804]
  101. Polymers (Basel). 2023 Aug 12;15(16): [PMID: 37631443]
  102. Microbiology (Reading). 2002 Jun;148(Pt 6):1757-1765 [PMID: 12055295]
  103. J Bacteriol. 1998 Dec;180(23):6283-91 [PMID: 9829938]
  104. Sci Rep. 2015 Apr 23;5:9555 [PMID: 25906433]
  105. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17020-4 [PMID: 12471157]
  106. J Bacteriol. 1974 Sep;119(3):736-47 [PMID: 4604283]
  107. Mol Cell. 2014 Mar 6;53(5):689-99 [PMID: 24560923]
  108. Mol Microbiol. 2021 Jan;115(1):142-156 [PMID: 32959419]

Grants

  1. R03 AI174033/NIAID NIH HHS
  2. R15 AI164585/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0AGXXExPECsilverROSeffectsdamageantibioticglobalinfectionsNovelbacteriabacterialresponsedefenseDNAAmplifieddeclinediscoveryriseresistancebecomesignificantchallengeinfectiousdiseasecontrolExtraintestinalknowncommoninstigatorsurinarytractUTIsrepresentthreatstrategiesefficienttreatmentsthereforedesperatelyneededincludenanoparticlesusedantimicrobialsurface-coatingscatheterseliminatebiofilm-forminguropathogensreducerisknosocomialpromisingcoatingpresumablykillsgenerationreactiveoxygenspeciespotentHoweverneitherAGXX'smodeactionfullyunderstoodGram-negativemechanismstowardsstudieddetailreportbactericidalprimarilybasedformationsupplementationmediascavengercompletelyabolishedAGXX-inducedkillingshowimpairsintegritycellenvelopecausessubstantialproteinaggregationalreadysublethalconcentrationsstrainsappearresistantproteotoxiccomparednon-pathogenicindicatingimprovedcapabilitiesuropathogenGlobaltranscriptomicstudiesAGXX-stressedrevealedstrongoxidativestressperturbationsmetalhomeostasiswellactivationheatshockresponsesFinallypresentevidencecounterproductionchaperonepolyphosphateSilver-Ruthenium-BasedAntimicrobialKillsGram-NegativeBacteriaOxidativeStress-InducedMacromolecularDamage

Similar Articles

Cited By

No available data.