SARS-CoV-2 excretion and genetic evolution in nasopharyngeal and stool samples from primary immunodeficiency and immunocompetent pediatric patients.

Haifa Khemiri, Ilhem Ben Fraj, Alessio Lorusso, Najla Mekki, Iolanda Mangone, Mariem Gdoura, Adriano Di Pasqual, Cesare Cammà, Valeria Di Lollo, Asma Cherni, Henda Touzi, Amel Sadraoui, Zina Meddeb, Nahed Hogga, Imen Ben Mustapha, Mohamed-Ridha Barbouche, Monia Ouederni, Henda Triki, Sondes Haddad-Boubaker
Author Information
  1. Haifa Khemiri: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia. haifa.khemiri@pasteur.utm.tn.
  2. Ilhem Ben Fraj: Pediatric Department of the National Center of Bone Marrow Transplantation, Tunis, Tunisia.
  3. Alessio Lorusso: Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100, Teramo, Italy.
  4. Najla Mekki: Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
  5. Iolanda Mangone: Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100, Teramo, Italy.
  6. Mariem Gdoura: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  7. Adriano Di Pasqual: Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100, Teramo, Italy.
  8. Cesare Cammà: Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100, Teramo, Italy.
  9. Valeria Di Lollo: Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, 64100, Teramo, Italy.
  10. Asma Cherni: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  11. Henda Touzi: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  12. Amel Sadraoui: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  13. Zina Meddeb: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  14. Nahed Hogga: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  15. Imen Ben Mustapha: Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
  16. Mohamed-Ridha Barbouche: Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
  17. Monia Ouederni: Pediatric Department of the National Center of Bone Marrow Transplantation, Tunis, Tunisia.
  18. Henda Triki: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
  19. Sondes Haddad-Boubaker: Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia. sondeshaddadboubaker@gmail.com.

Abstract

BACKGROUND: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.
MATERIALS AND METHODS: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children. RNA detection was performed using RT-qPCR, and whole-genome sequencing was conducted with the NexSeq 1000 platform. Data analysis used the nextflow/viralrecon pipeline. Hotspot amino acid frequencies were investigated using GraphPad Prism v10. Phylodynamic analysis was conducted with BEAST software.
RESULTS: In IC children, the viral excretion period lasted up to 14 days in nasopharyngeal swabs, with an average duration of 7 days, and ranged from 7 to 14 days in stool samples. In PID patients, the viral RNA was detected in nasopharyngeal for periods between 7 and 28 days, with an average duration of 15 days, and up to 28 days in stool samples. Two SARS-CoV-2 variants were detected in PID patients: Delta (AY.122) and Omicron (BA.1.1). Patients with antibody and combined deficiencies, exhibited the most prolonged shedding periods in both nasopharyngeal and stool samples and one patient presented complications and fatal outcome. Specific Hotspot amino acid changes were detected in PID: A2821V and R550H (ORF1ab).
CONCLUSION: Our findings underscore the prolonged excretion of SARS-CoV-2 RNA in patients with antibody and combined deficiencies. Thus, specialized care is essential for effectively managing PID patients.

Keywords

References

  1. Clin Immunol. 2022 Oct;243:109097 [PMID: 35973637]
  2. J Clin Immunol. 2021 Nov;41(8):1748-1753 [PMID: 34528161]
  3. J Med Virol. 2022 Apr;94(4):1728-1733 [PMID: 34897752]
  4. Lancet Microbe. 2024 Mar;5(3):e235-e246 [PMID: 38286131]
  5. Cell. 2020 Dec 23;183(7):1901-1912.e9 [PMID: 33248470]
  6. Annu Rev Med. 2024 Jan 29;75:145-157 [PMID: 37722709]
  7. N Engl J Med. 2021 Aug 5;385(6):562-566 [PMID: 34347959]
  8. J Biomol Struct Dyn. 2023 Feb;41(3):912-929 [PMID: 34904526]
  9. BMC Genomics. 2021 Jul 14;22(1):540 [PMID: 34261445]
  10. Front Med (Lausanne). 2023 Oct 30;10:1226207 [PMID: 38020093]
  11. Nat Microbiol. 2020 Nov;5(11):1403-1407 [PMID: 32669681]
  12. Front Immunol. 2023 Oct 02;14:1209513 [PMID: 37849762]
  13. Viruses. 2023 Jan 28;15(2): [PMID: 36851588]
  14. Sci Rep. 2024 Mar 4;14(1):5325 [PMID: 38438451]
  15. Front Microbiol. 2020 Jul 22;11:1800 [PMID: 32793182]
  16. CMAJ. 2004 May 11;170(10):1569-77 [PMID: 15136552]
  17. Vaccines (Basel). 2022 Dec 13;10(12): [PMID: 36560544]
  18. Front Immunol. 2017 Jun 13;8:685 [PMID: 28952612]
  19. Nat Commun. 2021 Nov 4;12(1):6405 [PMID: 34737266]
  20. Front Immunol. 2019 Mar 26;10:586 [PMID: 30984175]
  21. Virol J. 2022 Mar 28;19(1):54 [PMID: 35346227]
  22. Nat Biotechnol. 2020 Mar;38(3):276-278 [PMID: 32055031]
  23. Viruses. 2020 Nov 09;12(11): [PMID: 33182268]
  24. Virus Res. 2024 Jun;344:199353 [PMID: 38490581]
  25. Pediatr Blood Cancer. 2020 Aug;67(8):e28410 [PMID: 32452123]
  26. Viruses. 2022 Mar 17;14(3): [PMID: 35337031]
  27. Heliyon. 2023 Oct 19;9(11):e21101 [PMID: 38027571]
  28. Virusdisease. 2021 Dec;32(4):690-702 [PMID: 34307771]
  29. Infect Control Hosp Epidemiol. 2020 Sep;41(9):1106-1107 [PMID: 32297847]
  30. Int J Infect Dis. 2022 Sep;122:136-143 [PMID: 35598737]
  31. J Allergy Clin Immunol. 2021 Feb;147(2):520-531 [PMID: 32980424]
  32. J Paediatr Child Health. 2021 Apr;57(4):594 [PMID: 33751684]
  33. J Med Virol. 2024 Sep;96(9):e29918 [PMID: 39311394]
  34. Am J Med Sci. 2020 Dec;360(6):740-741 [PMID: 32773108]
  35. Clin Case Rep. 2020 Dec 08;9(2):755-758 [PMID: 33598240]
  36. Ann N Y Acad Sci. 2012 Feb;1250:56-61 [PMID: 22299606]
  37. Ann Palliat Med. 2021 Jun;10(6):7003-7007 [PMID: 33183020]
  38. Microorganisms. 2022 Sep 30;10(10): [PMID: 36296230]
  39. Curr Issues Mol Biol. 2022 Dec 21;45(1):33-50 [PMID: 36661489]
  40. Int J Infect Dis. 2022 Sep;122:444-448 [PMID: 35724829]
  41. Glob Chall. 2017 Jan 10;1(1):33-46 [PMID: 31565258]
  42. Viruses. 2024 May 14;16(5): [PMID: 38793660]
  43. Pediatr Blood Cancer. 2021 Dec;68(12):e29277 [PMID: 34453477]
  44. Front Public Health. 2023 Jan 04;10:990832 [PMID: 36684874]
  45. mSphere. 2021 Aug 25;6(4):e0024421 [PMID: 34319130]
  46. J Clin Med. 2021 Jun 18;10(12): [PMID: 34207314]
  47. J Infect. 2021 Mar;82(3):329-338 [PMID: 33549624]
  48. Viruses. 2023 Mar 21;15(3): [PMID: 36992509]
  49. EBioMedicine. 2021 May;67:103355 [PMID: 33915337]
  50. J Clin Immunol. 2021 Feb;41(2):345-355 [PMID: 33263173]
  51. J Infect. 2022 Jan;84(1):31-39 [PMID: 34785268]

MeSH Term

Humans
SARS-CoV-2
Feces
Nasopharynx
COVID-19
Child
Male
Female
Child, Preschool
RNA, Viral
Virus Shedding
Infant
Phylogeny
Evolution, Molecular
Primary Immunodeficiency Diseases
Adolescent
Whole Genome Sequencing

Chemicals

RNA, Viral

Word Cloud

Created with Highcharts 10.0.0PIDpatientsdaysnasopharyngealstoolsamplesSARS-CoV-2excretionprolongeddurationICRNAacid7detectedPrimaryCOVID-19geneticevolutionpediatricimmunocompetentchildrenusingconductedanalysisHotspotaminoviral14averageperiods281antibodycombineddeficienciesimmunodeficiencyBACKGROUND:ImmunodeficiencydisorderscanincreaserisksevereinfectionstudyinvestigatesviruscomparedMATERIALSANDMETHODS:total4024obtainedfivetendetectionperformedRT-qPCRwhole-genomesequencingNexSeq1000platformDatausednextflow/viralreconpipelinefrequenciesinvestigatedGraphPadPrismv10PhylodynamicBEASTsoftwareRESULTS:periodlastedswabsranged15Twovariantspatients:DeltaAY122OmicronBAPatientsexhibitedsheddingonepatientpresentedcomplicationsfataloutcomeSpecificchangesPID:A2821VR550HORF1abCONCLUSION:findingsunderscoreThusspecializedcareessentialeffectivelymanagingprimaryAminoDurationImmunocompetentSNPs

Similar Articles

Cited By