Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice.

Jia Xu, Ye Yao, Qisheng Zhuang, Zixuan Li, Min Zhang, Shouan Wang, Hongxin Hu, Jianbin Ye
Author Information
  1. Jia Xu: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
  2. Ye Yao: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
  3. Qisheng Zhuang: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
  4. Zixuan Li: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
  5. Min Zhang: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
  6. Shouan Wang: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
  7. Hongxin Hu: The Affiliated Hospital of Putian University, Putian City, 351100, Fujian Province, China. ptyygkhhx@ptu.edu.cn.
  8. Jianbin Ye: School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China. happye1986@163.com.

Abstract

BACKGROUND: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.
METHODS: Recombinant Trichinella spiralis chitinase (rTs-chit) was expressed in Escherichia coli BL21, and its structural homology to murine acidic mammalian chitinase (AMCase) was comprehensively analyzed. The expression of Ts-chit was examined across all T. spiralis life stages. To explore its immunomodulatory potential, a murine model of allergen-induced airway inflammation was established. The effects of rTs-chit were evaluated by assessing airway hyperresponsiveness and cytokine profiles in bronchoalveolar lavage fluid and performing detailed histopathological and immunohistochemical analyses.
RESULTS: Recombinant Ts-chit (rTs-chit) was successfully expressed in E. coli BL21, showing strong structural similarity to murine acidic mammalian chitinase (AMCase). Expression profiling revealed that Ts-chit is present throughout all stages of the T. spiralis life cycle. In an allergic airway inflammation model, rTs-chit reduced weight loss and lung inflammation, lowering inflammatory cell infiltration and Th2 cytokines (IL-4, IL-5, IL-13) while increasing the immunosuppressive cytokine IL-10. Additionally, rTs-chit treatment decreased the expression of GATA3, arginase-1, MCP-1, CCL-11, and AMCase, along with reducing OVA-specific IgE, IgG, and IgG1 levels, suggesting its potential as an immunomodulatory agent.
CONCLUSIONS: This study highlights rTs-chit's potential as a therapeutic agent for allergic airway diseases, leveraging its structural similarity to host chitinases to regulate Th2 responses and inflammatory pathways. The findings provide new insights into helminth-derived proteins as promising candidates for immune-based therapies.

Keywords

References

  1. Allergol Immunopathol (Madr). 2022 Sep 01;50(5):7-15 [PMID: 36086958]
  2. Trends Pharmacol Sci. 1998 Aug;19(8):334-41 [PMID: 9745362]
  3. PLoS Negl Trop Dis. 2020 Apr 27;14(4):e0008269 [PMID: 32339171]
  4. Science. 2004 Jun 11;304(5677):1678-82 [PMID: 15192232]
  5. Crit Rev Food Sci Nutr. 2003;43(1):61-87 [PMID: 12587986]
  6. Int Arch Allergy Immunol. 2013;161 Suppl 2:3-9 [PMID: 23711847]
  7. Lancet Glob Health. 2023 Feb;11(2):e218-e228 [PMID: 36669806]
  8. Front Immunol. 2018 Sep 28;9:2220 [PMID: 30323811]
  9. Int J Chron Obstruct Pulmon Dis. 2020 Apr 23;15:885-899 [PMID: 32368034]
  10. Enzyme Res. 2016;2016:2682680 [PMID: 26881065]
  11. Biochem Pharmacol. 2020 Dec;182:114292 [PMID: 33080186]
  12. Front Immunol. 2017 Apr 24;8:453 [PMID: 28484453]
  13. Front Cell Infect Microbiol. 2024 May 17;14:1359888 [PMID: 38828265]
  14. PLoS Pathog. 2015 Mar 12;11(3):e1004701 [PMID: 25764512]
  15. Hepatol Res. 2013 Mar;43(3):267-75 [PMID: 22971072]
  16. Elife. 2020 May 18;9: [PMID: 32420871]
  17. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2891-9 [PMID: 26038565]
  18. Ann Glob Health. 2019 Jan 22;85(1): [PMID: 30741507]
  19. Cells. 2024 Apr 14;13(8): [PMID: 38667293]
  20. Hum Gene Ther. 2009 Dec;20(12):1597-606 [PMID: 19548841]
  21. Parasitol Res. 2008 Oct;103(5):1183-9 [PMID: 18654798]
  22. Nat Rev Immunol. 2010 Mar;10(3):170-81 [PMID: 20154735]
  23. Clin Proteomics. 2013 Dec 02;10(1):19 [PMID: 24295388]
  24. Dement Geriatr Cogn Dis Extra. 2014 Jul 31;4(2):297-304 [PMID: 25254036]
  25. J Helminthol. 2020 Sep 21;94:e193 [PMID: 32951619]
  26. Ann Allergy Asthma Immunol. 2013 Jun;110(6):444-449.e1 [PMID: 23706714]
  27. Allergy. 2014 Nov;69(11):1489-97 [PMID: 25069662]
  28. Immunol Res. 2010 Jul;47(1-3):185-206 [PMID: 20087682]
  29. J Exp Med. 2005 Nov 7;202(9):1199-212 [PMID: 16275759]
  30. J Allergy Clin Immunol. 2005 Sep;116(3):497-500 [PMID: 16159614]
  31. Am J Respir Crit Care Med. 2016 Jan 15;193(2):131-42 [PMID: 26372680]
  32. PLoS Negl Trop Dis. 2018 May 14;12(5):e0006485 [PMID: 29758030]
  33. Cell. 2021 Mar 18;184(6):1469-1485 [PMID: 33711259]
  34. Transl Res. 2018 Jan;191:1-14 [PMID: 29066321]
  35. J Inflamm Res. 2021 Oct 14;14:5305-5318 [PMID: 34703270]
  36. J Immunol Res. 2021 Nov 25;2021:6234836 [PMID: 34869783]
  37. JCI Insight. 2021 Mar 8;6(5): [PMID: 33682796]
  38. Basic Res Cardiol. 2017 May;112(3):33 [PMID: 28439731]
  39. J Allergy Clin Immunol. 2013 Oct;132(4):951-8.e1-6 [PMID: 23763980]
  40. Trends Parasitol. 2001 Jun;17(6):269-72 [PMID: 11378031]
  41. Parasitol Res. 2015 Feb;114(2):613-24 [PMID: 25399816]
  42. Int Immunol. 2004 Apr;16(4):585-96 [PMID: 15039389]
  43. Parasitol Int. 2016 Oct;65(5 Pt B):591-595 [PMID: 27495839]
  44. Biosci Rep. 2018 Aug 29;38(4): [PMID: 30042170]
  45. Cytokine Growth Factor Rev. 2010 Oct;21(5):331-44 [PMID: 21115385]
  46. J Exp Med. 2020 Jan 6;217(1): [PMID: 31611251]
  47. Annu Rev Immunol. 2001;19:683-765 [PMID: 11244051]
  48. J Allergy Clin Immunol Pract. 2022 Aug;10(8):2074-2083.e7 [PMID: 35398551]
  49. Allergol Int. 2020 Apr;69(2):178-186 [PMID: 32139163]
  50. Expert Rev Clin Immunol. 2018 Feb;14(2):99-102 [PMID: 29300114]
  51. Front Immunol. 2022 Dec 20;13:1056477 [PMID: 36605195]
  52. Parasit Vectors. 2014 Nov 20;7:522 [PMID: 25409540]
  53. Trop Biomed. 2021 Mar 1;38(1):160-171 [PMID: 33797541]
  54. Int J Mol Sci. 2021 Dec 20;22(24): [PMID: 34948449]
  55. Front Microbiol. 2022 Mar 23;13:857786 [PMID: 35401479]
  56. Annu Rev Immunol. 2011;29:71-109 [PMID: 21166540]
  57. Int Immunopharmacol. 2023 Jun;119:110101 [PMID: 37058749]
  58. Allergy Asthma Proc. 2021 Jan 1;42(1):e8-e16 [PMID: 33404396]
  59. Inflammation. 2013 Apr;36(2):482-92 [PMID: 23149946]
  60. Nat Rev Immunol. 2015 Jan;15(1):57-65 [PMID: 25534623]
  61. J Clin Invest. 1999 Oct;104(8):995-9 [PMID: 10525033]
  62. Clin Exp Immunol. 2019 Dec;198(3):390-402 [PMID: 31397879]
  63. Int J Mol Sci. 2021 Jun 28;22(13): [PMID: 34203467]
  64. Int Arch Allergy Immunol. 2010;153(4):388-94 [PMID: 20559005]
  65. J Pharm Bioallied Sci. 2013 Jan;5(1):21-9 [PMID: 23559820]
  66. Parasit Vectors. 2019 Jun 28;12(1):326 [PMID: 31253164]
  67. Parasitol Res. 2020 Nov;119(11):3719-3728 [PMID: 32955617]
  68. Vet Parasitol. 2016 Nov 15;231:92-96 [PMID: 27061788]

Grants

  1. 82302565/National Natural Science Foundation of China
  2. 2022SZ3001ptxy08/Putian Science and Technology Bureau
  3. 2021069/Startup Fund for Advanced Talents of Putian University
  4. 2023J011008/Natural Science Foundation of Fujian Province

MeSH Term

Animals
Trichinella spiralis
Chitinases
Mice
Mice, Inbred BALB C
Cytokines
Female
Disease Models, Animal
Recombinant Proteins
Immunologic Factors
Helminth Proteins
Bronchoalveolar Lavage Fluid
Trichinellosis
Respiratory Hypersensitivity
Escherichia coli
Hypersensitivity
Lung

Chemicals

Chitinases
Cytokines
Recombinant Proteins
Immunologic Factors
Helminth Proteins
AMCase, mouse

Word Cloud

Created with Highcharts 10.0.0spiralisairwaychitinaseinflammationrTs-chitTrichinellaTs-chitallergicstructuralmurineAMCaseimmunomodulatorypotentialdiseaseshelminth-derivedstudyRecombinantexpressedcoliBL21acidicmammalianexpressionTlifestagesmodeleffectscytokinesimilarityinflammatoryTh2agentBACKGROUND:fundamentaltenethygienetheoryinverseassociationhelminthinfectionsemergenceimmune-mediatedResearchdoneclarifyprocessesmoleculescaninhibitimmunologicaldisordersaimedevaluateabilityamelioratesymptomsMETHODS:Escherichiahomologycomprehensivelyanalyzedexaminedacrossexploreallergen-inducedestablishedevaluatedassessinghyperresponsivenessprofilesbronchoalveolarlavagefluidperformingdetailedhistopathologicalimmunohistochemicalanalysesRESULTS:successfullyEshowingstrongExpressionprofilingrevealedpresentthroughoutcyclereducedweightlosslungloweringcellinfiltrationcytokinesIL-4IL-5IL-13increasingimmunosuppressiveIL-10AdditionallytreatmentdecreasedGATA3arginase-1MCP-1CCL-11alongreducingOVA-specificIgEIgGIgG1levelssuggestingCONCLUSIONS:highlightsrTs-chit'stherapeuticleveraginghostchitinasesregulateresponsespathwaysfindingsprovidenewinsightsproteinspromisingcandidatesimmune-basedtherapiesCharacterizationmiceAllergyAsthmaChitinase

Similar Articles

Cited By