Enhancing the Implant Osteointegration via Supramolecular Co-Assembly Coating with Early Immunomodulation and Cell Colonization.

Chenglong Wang, Zeyu Shou, Chengwei Xu, Kaiyuan Huo, Wenjie Liu, Hao Liu, Xingjie Zan, Qing Wang, Lianxin Li
Author Information
  1. Chenglong Wang: Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
  2. Zeyu Shou: Department of Orthopedics, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, 311800, China.
  3. Chengwei Xu: Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
  4. Kaiyuan Huo: Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China.
  5. Wenjie Liu: Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China.
  6. Hao Liu: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
  7. Xingjie Zan: Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, Zhejiang, 325001, China. ORCID
  8. Qing Wang: Yongkang First People's Hospital of Wenzhou Medical University, Jinhua, 321300, China.
  9. Lianxin Li: Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.

Abstract

Osteointegration, the effective coupling between an implant and bone tissue, is a highly intricate biological process. The initial stages of bone-related immunomodulation and cellular colonization play crucial roles, but have received limited attention. Herein, a novel supramolecular co-assembled coating of strontium (Sr)-doped metal polyphenol networks (MPN) modified with c(RGDfc) is developed and well-characterized, for eliciting an early immunomodulation and cellular colonization. The results showed that the (Sr-MPN)@RGD coating significantly regulated the polarization of macrophages to the M2 phenotype by controllable release of Sr, and promote the initial adhesion of bone marrow mesenchymal stem cells (BMSCs) by RGD presented on MPN. Notably, the (Sr-MPN)@RGD attenuated osteoclast differentiation and oxidative stress as well as enhanced osteoblast differentiation and angiogenesis due to macrophage polarization toward M2 phenotype, which in turn has a profound effect on neighboring cells through paracrine signaling. In vivo results showed that the (Sr-MPN)@RGD coating manifested superior osseointegration and bone maturation to the bare Ti-rod or Ti-rod coated with MPN and Sr-MPN. This work contributed to the design of multifunctional implant coatings that address the complex biological process of osteointegration from the perspective of orchestrating stem cell recruitment with immunomodulatory strategies.

Keywords

References

  1. J Periodontal Res. 2020 Oct;55(5):713-723 [PMID: 32406091]
  2. Pharmaceutics. 2020 Dec 24;13(1): [PMID: 33374184]
  3. Adv Sci (Weinh). 2024 May;11(18):e2307269 [PMID: 38445899]
  4. ACS Appl Bio Mater. 2020 Jan 21;3(1):673-684 [PMID: 35019412]
  5. ACS Biomater Sci Eng. 2019 Jul 8;5(7):3582-3594 [PMID: 33405740]
  6. J Nanobiotechnology. 2022 Jun 3;20(1):255 [PMID: 35658870]
  7. Int J Mol Sci. 2020 Dec 21;21(24): [PMID: 33371306]
  8. Regen Biomater. 2022 Oct 13;9:rbac078 [PMID: 36324608]
  9. Science. 2013 Jul 12;341(6142):154-7 [PMID: 23846899]
  10. Bioact Mater. 2021 Oct 07;9:1-14 [PMID: 34820551]
  11. Colloids Surf B Biointerfaces. 2022 Apr;212:112319 [PMID: 35051792]
  12. Mil Med Res. 2022 Nov 19;9(1):65 [PMID: 36401295]
  13. Osteoarthritis Cartilage. 2020 May;28(5):555-561 [PMID: 31982565]
  14. Biomaterials. 2018 Nov;182:202-215 [PMID: 30138783]
  15. Colloids Surf B Biointerfaces. 2019 Sep 1;181:549-560 [PMID: 31185447]
  16. Langmuir. 2019 May 21;35(20):6752-6761 [PMID: 31030514]
  17. Mater Today Bio. 2024 Mar 03;25:101017 [PMID: 38495914]
  18. Mater Today Bio. 2023 Nov 19;23:100871 [PMID: 38179229]
  19. Front Immunol. 2024 Mar 15;15:1360065 [PMID: 38558823]
  20. Colloids Surf B Biointerfaces. 2023 Sep;229:113454 [PMID: 37499546]
  21. Biomater Sci. 2020 Jun 21;8(12):3404-3417 [PMID: 32377652]
  22. Int J Implant Dent. 2019 Mar 11;5(1):10 [PMID: 30854575]
  23. Colloids Surf B Biointerfaces. 2022 Oct;218:112741 [PMID: 35961112]
  24. Adv Sci (Weinh). 2021 Oct;8(19):e2100584 [PMID: 34382372]
  25. Bioact Mater. 2021 Mar 01;6(9):2983-2998 [PMID: 33732968]
  26. Mater Today Bio. 2023 Dec 16;24:100921 [PMID: 38226017]
  27. Acta Biomater. 2011 May;7(5):2091-100 [PMID: 21272672]
  28. Nanomedicine. 2017 Jan;13(1):123-142 [PMID: 27553074]
  29. Langmuir. 2017 Oct 10;33(40):10616-10622 [PMID: 28953397]
  30. Biomaterials. 2011 Oct;32(28):6692-709 [PMID: 21715002]
  31. Acta Biomater. 2019 Aug;94:112-131 [PMID: 31128320]
  32. Biomaterials. 2023 Oct;301:122268 [PMID: 37572468]
  33. Adv Sci (Weinh). 2025 Mar;12(9):e2410595 [PMID: 39806935]
  34. Regen Biomater. 2022 Dec 26;10:rbac107 [PMID: 36683760]
  35. Periodontol 2000. 2023 Oct;93(1):9-25 [PMID: 38194351]
  36. Nat Rev Rheumatol. 2023 Feb;19(2):78-95 [PMID: 36624263]
  37. Chem Soc Rev. 2015 Aug 7;44(15):5680-742 [PMID: 26023741]
  38. Biotechnol J. 2021 Jul;16(7):e2000116 [PMID: 33813785]
  39. Acta Biomater. 2011 Aug;7(8):3013-26 [PMID: 21453799]
  40. Acta Biomater. 2016 Feb;31:425-434 [PMID: 26675126]
  41. Lancet. 2012 Nov 17;380(9855):1759-66 [PMID: 23036895]
  42. Phytomedicine. 2022 Feb;96:153838 [PMID: 34801352]
  43. Acta Biomater. 2021 May;126:119-131 [PMID: 33684536]
  44. Antioxidants (Basel). 2023 Dec 10;12(12): [PMID: 38136214]
  45. Nat Commun. 2022 Jan 10;13(1):160 [PMID: 35013289]
  46. Chem Rev. 2022 Jul 13;122(13):11432-11473 [PMID: 35537069]
  47. J Leukoc Biol. 2022 Nov;112(5):1013-1023 [PMID: 35603496]
  48. Nat Protoc. 2023 Jul;18(7):2256-2282 [PMID: 37316563]

Grants

  1. 2021SFGC0502/Shandong Province Major Scientific and Technical Innovation
  2. ZR2024QH334/Natural Science Foundation of Shandong Province
  3. WIUCASQD2019009/startup funding from the Wenzhou Institute of UCAS
  4. 2024SKY117/Shaoxing Scientific and Technical Project

MeSH Term

Animals
Immunomodulation
Osseointegration
Mesenchymal Stem Cells
Cell Differentiation
Coated Materials, Biocompatible
Mice
Macrophages
Prostheses and Implants
Osteogenesis
Models, Animal
Titanium
Strontium

Chemicals

Coated Materials, Biocompatible
Titanium
Strontium

Word Cloud

Created with Highcharts 10.0.0Sr-MPNbonecolonizationcoatingMPN@RGDOsteointegrationimplantbiologicalprocessinitialimmunomodulationcellularstrontiumSrresultsshowedpolarizationM2phenotypestemcellsRGDdifferentiationTi-rodeffectivecouplingtissuehighlyintricatestagesbone-relatedplaycrucialrolesreceivedlimitedattentionHereinnovelsupramolecularco-assembled-dopedmetalpolyphenolnetworksmodifiedcRGDfcdevelopedwell-characterizedelicitingearlysignificantlyregulatedmacrophagescontrollablereleasepromoteadhesionmarrowmesenchymalBMSCspresentedNotablyattenuatedosteoclastoxidativestresswellenhancedosteoblastangiogenesisduemacrophagetowardturnprofoundeffectneighboringparacrinesignalingvivomanifestedsuperiorosseointegrationmaturationbarecoatedworkcontributeddesignmultifunctionalcoatingsaddresscomplexosteointegrationperspectiveorchestratingcellrecruitmentimmunomodulatorystrategiesEnhancingImplantviaSupramolecularCo-AssemblyCoatingEarlyImmunomodulationCellColonizationmetal‐phenolicnetworkosteoimmunology

Similar Articles

Cited By