In silico validation of non-invasive arterial compliance estimation and potential determinants of its variability.

M Javorka, D Švec, V Bikia, B Czippelová, N Stergiopulos, J Čerňanová Krohová
Author Information

Abstract

Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions. The aim of this study was to validate AC estimation using a virtual population generated by in silico model of the systemic arterial tree. In the second part of study, we analysed causal coupling between AC oscillations and variability of its potential determinants - systolic blood pressure and heart rate in healthy young human subjects. The pool of virtual subjects (n=3818) represented an extensive AC distribution. AC was estimated from the peripheral blood pressure curve and by the standard method from the aortic blood pressure curve. The proposed method slightly overestimated AC set in the model but both ACs were strongly correlated (r=0.94, p<0.001). In real data, we observed that AC dynamics was coupled with basic cardiovascular parameters variability independently of the autonomic nervous system state. In silico analysis suggests that AC can be reliably estimated by noninvasive method. The analysis of short-term AC variability together with its determinants could improve our understanding of factors involved in AC dynamics potentially improving assessment of AC changes associated with atherosclerosis process. Key words Arterial compliance, Cardiovascular model, Arterial blood pressure, Causal analysis, Volume-clamp photoplethysmography.

References

  1. Cardiology. 1979;64(2):122-32 [PMID: 436125]
  2. J Am Heart Assoc. 2018 Jan 29;7(3): [PMID: 29378730]
  3. Int J Hypertens. 2017;2017:6265823 [PMID: 29085674]
  4. Med Biol Eng Comput. 2017 Feb;55(2):179-190 [PMID: 27106759]
  5. Am J Cardiol. 2012 Oct 15;110(8):1189-94 [PMID: 22770936]
  6. J Vasc Res. 2020;57(3):143-151 [PMID: 32235116]
  7. J Am Coll Cardiol. 2007 Jul 3;50(1):1-13 [PMID: 17601538]
  8. Psychosom Med. 2006 Mar-Apr;68(2):231-7 [PMID: 16554388]
  9. Physiol Res. 2021 Dec 30;70(Suppl4):S483-S494 [PMID: 35199538]
  10. Physiol Res. 2021 Dec 31;70(S3):S339-S348 [PMID: 35099252]
  11. New J Phys. 2016 Oct;18: [PMID: 30881198]
  12. J Hypertens. 2012 Feb;30(2):307-14 [PMID: 22179089]
  13. Hypertension. 1998 Sep;32(3):556-9 [PMID: 9740625]
  14. Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H208-22 [PMID: 19429832]
  15. J Appl Physiol (1985). 2020 May 1;128(5):1310-1320 [PMID: 32213110]
  16. Proc Inst Mech Eng H. 2008 May;222(4):417-28 [PMID: 18595354]
  17. Arterioscler Thromb Vasc Biol. 2020 May;40(5):1068-1077 [PMID: 32268787]
  18. J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60 [PMID: 16256881]
  19. Front Netw Physiol. 2023 Oct 13;3:1284256 [PMID: 37900301]
  20. Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1173-82 [PMID: 21622820]
  21. Ann Transl Med. 2020 Jun;8(12):795 [PMID: 32647720]
  22. Front Netw Physiol. 2024 Apr 04;4:1346424 [PMID: 38638612]
  23. Ultrasound Med Biol. 2001 Sep;27(9):1207-10 [PMID: 11597361]
  24. J Appl Physiol (1985). 2006 Aug;101(2):598-608 [PMID: 16849813]
  25. Am J Physiol. 1997 Aug;273(2 Pt 2):R597-608 [PMID: 9277544]
  26. Front Bioeng Biotechnol. 2024 Mar 08;12:1345502 [PMID: 38524194]
  27. JACC Cardiovasc Imaging. 2008 Mar;1(2):200-9 [PMID: 19356429]
  28. IEEE Trans Biomed Eng. 1997 Nov;44(11):1092-101 [PMID: 9353988]
  29. Am J Physiol. 1998 Feb;274(2):H500-5 [PMID: 9486253]
  30. Exp Physiol. 2003 Nov;88(6):769-74 [PMID: 14603376]
  31. Front Netw Physiol. 2021 Jun 30;1:711778 [PMID: 36925582]
  32. Hypertension. 2002 Jun;39(6):1083-7 [PMID: 12052846]

MeSH Term

Humans
Computer Simulation
Male
Models, Cardiovascular
Arteries
Female
Adult
Blood Pressure
Young Adult
Vascular Resistance
Compliance
Heart Rate
Vascular Stiffness

Word Cloud

Created with Highcharts 10.0.0ACbloodpressuremethodmodelperipheralvariabilityArterialcompliancearterialsilicodeterminantsanalysiscardiovascularproposedparametersstudyestimationvirtualpotentialsubjectsestimatedcurvedynamicsimportantparametercharacterizingmechanicalpropertiesarteriessignificantlyinfluencedwallstructurevasomotionmarkedlyinfluencescardiacloadnewbasedtwo-elementWindkesselrecentlyestimatingratiotimeconstantTdiastolicdecayvascularresistancederivedclinicallyavailablestrokevolumemeasurementsselectedlesspronedistortionsaimvalidateusingpopulationgeneratedsystemictreesecondpartanalysedcausalcouplingoscillations-systolicheartratehealthyyounghumanpooln=3818representedextensivedistributionstandardaorticslightlyoverestimatedsetACsstronglycorrelatedr=094p<0001realdataobservedcoupledbasicindependentlyautonomicnervoussystemstatesuggestscanreliablynoninvasiveshort-termtogetherimproveunderstandingfactorsinvolvedpotentiallyimprovingassessmentchangesassociatedatherosclerosisprocessKeywordsCardiovascularCausalVolume-clampphotoplethysmographyvalidationnon-invasive

Similar Articles

Cited By