Principled neuromorphic reservoir computing.

Denis Kleyko, Christopher J Kymn, Anthony Thomas, Bruno A Olshausen, Friedrich T Sommer, E Paxon Frady
Author Information
  1. Denis Kleyko: Centre for Applied Autonomous Sensor Systems, ��rebro University, ��rebro, Sweden. denis.kleyko@oru.se. ORCID
  2. Christopher J Kymn: Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA.
  3. Anthony Thomas: Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA.
  4. Bruno A Olshausen: Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA.
  5. Friedrich T Sommer: Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA. fsommer@berkeley.edu. ORCID
  6. E Paxon Frady: Neuromorphic Computing Lab, Intel, Santa Clara, CA, USA.

Abstract

Reservoir computing advances the intriguing idea that a nonlinear recurrent neural circuit-the reservoir-can encode spatio-temporal input signals to enable efficient ways to perform tasks like classification or regression. However, recently the idea of a monolithic reservoir network that simultaneously buffers input signals and expands them into nonlinear features has been challenged. A representation scheme in which memory buffer and expansion into higher-order polynomial features can be configured separately has been shown to significantly outperform traditional reservoir computing in prediction of multivariate time-series. Here we propose a configurable neuromorphic representation scheme that provides competitive performance on prediction, but with significantly better scaling properties than directly materializing higher-order features as in prior work. Our approach combines the use of randomized representations from traditional reservoir computing with mathematical principles for approximating polynomial kernels via such representations. While the memory buffer can be realized with standard reservoir networks, computing higher-order features requires networks of 'Sigma-Pi' neurons, i.e., neurons that enable both summation as well as multiplication of inputs. Finally, we provide an implementation of the memory buffer and Sigma-Pi networks on Loihi 2, an existing neuromorphic hardware platform.

References

  1. Science. 1977 Jul 15;197(4300):287-9 [PMID: 267326]
  2. Chaos. 2021 Jan;31(1):013108 [PMID: 33754755]
  3. Neural Comput. 2018 Jun;30(6):1449-1513 [PMID: 29652585]
  4. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  5. Neural Netw. 2021 Oct;142:252-268 [PMID: 34034072]
  6. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  7. IEEE Trans Neural Netw. 2011 Jan;22(1):131-44 [PMID: 21075721]
  8. Chaos. 2022 Sep;32(9):093137 [PMID: 36182396]
  9. Science. 1995 Feb 17;267(5200):1028-30 [PMID: 7863330]
  10. Phys Rev Lett. 2004 Apr 9;92(14):148102 [PMID: 15089576]
  11. Neural Comput. 2006 Dec;18(12):3097-118 [PMID: 17052160]
  12. IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2191-2204 [PMID: 34478381]
  13. IEEE Trans Neural Netw. 1995;6(3):623-41 [PMID: 18263348]
  14. IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1688-1701 [PMID: 33351770]
  15. Science. 2017 Nov 10;358(6364):793-796 [PMID: 29123069]
  16. Proc IEEE Inst Electr Electron Eng. 2022 Oct;110(10):1538-1571 [PMID: 37868615]
  17. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  18. Network. 2000 Nov;11(4):321-32 [PMID: 11128170]
  19. Nat Commun. 2021 Sep 21;12(1):5564 [PMID: 34548491]
  20. Nat Commun. 2024 Mar 6;15(1):2056 [PMID: 38448438]
  21. Biol Cybern. 1975 Sep 18;19(4):201-9 [PMID: 1182229]
  22. Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200246 [PMID: 33583272]
  23. Nature. 2022 Mar;603(7899):119-123 [PMID: 35197635]
  24. Phys Rev Lett. 2018 Jan 12;120(2):024102 [PMID: 29376715]
  25. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  26. Chaos. 1998 Dec;8(4):782-790 [PMID: 12779784]
  27. Neural Netw. 2018 Dec;108:495-508 [PMID: 30317134]
  28. Mach Learn Appl. 2022 Jun 15;8: [PMID: 35755176]

Grants

  1. 2147640/NSF | NSF Office of the Director | Office of International Science and Engineering (Office of International Science & Engineering)
  2. 2313149/NSF | NSF Office of the Director | Office of International Science and Engineering (Office of International Science & Engineering)
  3. R01-EB026955/Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
  4. IIS1718991/NSF | NSF Office of the Director | Office of International Science and Engineering (Office of International Science & Engineering)
  5. R01 EB026955/NIBIB NIH HHS
  6. 839179/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sk��odowska-Curie Actions (H2020 Excellent Science - Marie Sk��odowska-Curie Actions)
  7. N/A/U.S. Department of Defense (United States Department of Defense)

Word Cloud

Similar Articles

Cited By