The small GTPase MRAS is a broken switch.

Gabriela Bernal Astrain, Regina Strakhova, Chang Hwa Jo, Emma Teszner, Ryan C Killoran, Matthew J Smith
Author Information
  1. Gabriela Bernal Astrain: Institute for Research in Immunology and Cancer (IRIC), Universit�� de Montr��al, Montr��al, QC, H3T 1J4, Canada.
  2. Regina Strakhova: Institute for Research in Immunology and Cancer (IRIC), Universit�� de Montr��al, Montr��al, QC, H3T 1J4, Canada.
  3. Chang Hwa Jo: Institute for Research in Immunology and Cancer (IRIC), Universit�� de Montr��al, Montr��al, QC, H3T 1J4, Canada. ORCID
  4. Emma Teszner: Institute for Research in Immunology and Cancer (IRIC), Universit�� de Montr��al, Montr��al, QC, H3T 1J4, Canada.
  5. Ryan C Killoran: Institute for Research in Immunology and Cancer (IRIC), Universit�� de Montr��al, Montr��al, QC, H3T 1J4, Canada.
  6. Matthew J Smith: Institute for Research in Immunology and Cancer (IRIC), Universit�� de Montr��al, Montr��al, QC, H3T 1J4, Canada. matthew.james.smith@umontreal.ca. ORCID

Abstract

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer. The exchange defect is unaffected by inclusion of the GEF SOS1 and is conserved in a distal ortholog from nematodes. Synthetic activating mutations widely used to study the function of MRAS in a presumed GTP-loaded state do not increase exchange, but instead drive effector binding due to sampling of an activated conformation in the GDP-loaded state. This includes nucleation of the SHOC2-PP1C�� holophosphatase complex. Acquisition of NMR spectra from isotopically labeled MRAS in live cells validated the GTPase remains fully GDP-loaded, even a supposed activated mutant. These data show that RAS GTPases, including those most similar to KRAS, have disparate biochemical activities and challenge current dogma on MRAS, suggesting previous data may need reinterpretation.

References

  1. Angew Chem Int Ed Engl. 2013 Oct 4;52(41):10771-4 [PMID: 24039022]
  2. Nat Struct Mol Biol. 2022 Oct;29(10):966-977 [PMID: 36175670]
  3. Cell Rep. 2020 Aug 25;32(8):108074 [PMID: 32846131]
  4. J Biol Chem. 2005 Sep 2;280(35):31267-75 [PMID: 15994326]
  5. Methods Mol Biol. 2004;278:313-52 [PMID: 15318002]
  6. Protein Sci. 2018 Jun;27(6):1083-1092 [PMID: 29577475]
  7. J Mol Biol. 2022 Sep 15;434(17):167695 [PMID: 35752212]
  8. J Proteomics. 2014 Apr 04;100:37-43 [PMID: 24513533]
  9. Mol Cell Proteomics. 2018 Nov;17(11):2256-2269 [PMID: 29991506]
  10. Cell Rep. 2022 Mar 15;38(11):110522 [PMID: 35294890]
  11. J Biol Chem. 2024 Feb;300(2):105650 [PMID: 38237681]
  12. J Clin Oncol. 2006 Sep 10;24(26):4236-44 [PMID: 16896004]
  13. FEBS J. 2020 Oct;287(19):4232-4245 [PMID: 32893973]
  14. Nat Chem Biol. 2014 Mar;10(3):223-30 [PMID: 24441586]
  15. Am J Med Genet A. 2021 Oct;185(10):3099-3103 [PMID: 34080768]
  16. J Control Release. 2006 May 15;112(2):257-70 [PMID: 16574264]
  17. J Biomol NMR. 1995 Nov;6(3):277-93 [PMID: 8520220]
  18. Sci STKE. 2004 Sep 07;2004(250):RE13 [PMID: 15367757]
  19. Nat Biotechnol. 2010 Oct;28(10):1015-7 [PMID: 20944583]
  20. J Biol Chem. 2012 Sep 7;287(37):31311-20 [PMID: 22807448]
  21. J Biol Chem. 2021 Dec;297(6):101428 [PMID: 34801548]
  22. Acta Pharmacol Sin. 2008 Mar;29(3):285-95 [PMID: 18298893]
  23. J Am Chem Soc. 2004 Mar 24;126(11):3477-87 [PMID: 15025475]
  24. J Cell Sci. 2024 May 1;137(9): [PMID: 38606629]
  25. Hum Mol Genet. 2020 Jul 21;29(11):1772-1783 [PMID: 31108500]
  26. Nature. 2022 Sep;609(7926):416-423 [PMID: 35830882]
  27. Nat Commun. 2018 Sep 7;9(1):3646 [PMID: 30194290]
  28. Mol Cell Proteomics. 2011 Dec;10(12):M111.007690 [PMID: 21876204]
  29. Cancer Med. 2017 Jan;6(1):235-244 [PMID: 27891760]
  30. J Am Chem Soc. 2013 Mar 6;135(9):3367-70 [PMID: 23409921]
  31. Cell Commun Signal. 2008 Sep 29;6:6 [PMID: 18823547]
  32. J Cell Biol. 2012 Mar 19;196(6):801-10 [PMID: 22412018]
  33. Am J Med Genet A. 2019 Aug;179(8):1628-1630 [PMID: 31173466]
  34. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10576-E10585 [PMID: 30348783]
  35. J Magn Reson. 2007 Jul;187(1):163-9 [PMID: 17468025]
  36. Exp Cell Res. 2010 Feb 1;316(3):477-90 [PMID: 19800879]
  37. J Biol Chem. 2000 Jun 30;275(26):20020-6 [PMID: 10777492]
  38. Nature. 2022 Sep;609(7926):400-407 [PMID: 35768504]
  39. Cells. 2016 Jun 14;5(2): [PMID: 27314390]
  40. JCI Insight. 2017 Mar 9;2(5):e91225 [PMID: 28289718]
  41. Cancer Cell. 2006 Dec;10(6):529-41 [PMID: 17157792]
  42. Mol Cell Biochem. 1994 Nov 9;140(1):1-22 [PMID: 7877593]
  43. Mol Cell. 2006 Apr 21;22(2):217-30 [PMID: 16630891]
  44. N Engl J Med. 2002 Dec 19;347(25):1999-2009 [PMID: 12490681]
  45. Nature. 2022 Sep;609(7926):408-415 [PMID: 35831509]
  46. J Biol Chem. 2010 Dec 17;285(51):39768-78 [PMID: 20937837]
  47. J Physiol. 2015 Dec 1;593(23):5075-90 [PMID: 26426338]
  48. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4574-9 [PMID: 23487764]
  49. J Mol Biol. 2011 Oct 21;413(2):372-89 [PMID: 21903096]
  50. Cell Rep. 2019 Oct 1;29(1):118-134.e8 [PMID: 31577942]
  51. Sci Signal. 2013 Nov 19;6(302):rs15 [PMID: 24255178]
  52. Hum Mol Genet. 2014 Aug 15;23(16):4315-27 [PMID: 24705357]
  53. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6625-30 [PMID: 25941399]
  54. Cancer Res. 2020 Jul 15;80(14):2969-2974 [PMID: 32209560]
  55. Bioinformatics. 2008 Nov 1;24(21):2534-6 [PMID: 18606607]
  56. Cell. 2013 Feb 28;152(5):1008-20 [PMID: 23452850]
  57. Oncogene. 2023 Jan;42(5):389-405 [PMID: 36476833]

MeSH Term

Guanosine Diphosphate
Guanosine Triphosphate
Animals
Humans
Monomeric GTP-Binding Proteins
ras Proteins
Mutation
Caenorhabditis elegans
Lipid Bilayers
Son of Sevenless Proteins
Caenorhabditis elegans Proteins

Chemicals

Guanosine Diphosphate
Guanosine Triphosphate
Monomeric GTP-Binding Proteins
ras Proteins
Lipid Bilayers
Son of Sevenless Proteins
Caenorhabditis elegans Proteins

Word Cloud

Created with Highcharts 10.0.0MRASfunctionGTPaseexchangeRASsmallGTPasesshowswitchstateactivatedGDP-loadeddataIntenseresearchfoundingmemberssuperfamilydefinedunderstandingcriticalsignallingproteinsleadingpremisemolecularswitchesdependentdifferentialnucleotideloadingclosesthomologsH/K/NRASthree-memberRRASfamilyinterestregulatorMAPKactivityrecentlyintensifiedclassicalunableGDP-to-GTPsolutiontetheredlipidbilayerdefectunaffectedinclusionGEFSOS1conserveddistalortholognematodesSyntheticactivatingmutationswidelyusedstudypresumedGTP-loadedincreaseinsteaddriveeffectorbindingduesamplingconformationincludesnucleationSHOC2-PP1C��holophosphatasecomplexAcquisitionNMRspectraisotopicallylabeledlivecellsvalidatedremainsfullyevensupposedmutantincludingsimilarKRASdisparatebiochemicalactivitieschallengecurrentdogmasuggestingpreviousmayneedreinterpretationbroken

Similar Articles

Cited By