Comprehensive dataset from high resolution UAV land cover mapping of diverse natural environments in Serbia.

Bojana Ivošević, Nina Pajević, Sanja Brdar, Rana Waqar, Maryam Khan, João Valente
Author Information
  1. Bojana Ivošević: BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21101, Novi Sad, Serbia. bojana.ivosevic@biosense.rs. ORCID
  2. Nina Pajević: BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21101, Novi Sad, Serbia.
  3. Sanja Brdar: BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21101, Novi Sad, Serbia.
  4. Rana Waqar: BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21101, Novi Sad, Serbia.
  5. Maryam Khan: Farmevo Technologies, 10016, New York, USA.
  6. João Valente: Centre for Automation and Robotics (CAR), Spanish National Research Council (CSIC), 28006, Madrid, Spain.

Abstract

This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis. Our method compares the efficacy and accuracy of object-based image analysis (OBIA) combined with random forest and convolutional neural networks (CNN) for land cover classification. We produced detailed land cover maps for 27 varied landscapes across Serbia, identifying nine unique land cover classes and assessing human impact on natural habitats. This resulted in a valuable dataset of HR multi-spectral orthomosaics across ecological zones, alongside land cover classification with extensive metrics and training data for each site. This dataset is a valuable resource for researchers working on habitats mapping and assessment for biodiversity monitoring studies on one side and researchers working on novel machine learning methods for land cover classification.

References

  1. Adv Neural Inf Process Syst. 2018 Dec;32:8792-8802 [PMID: 39839708]
  2. Science. 2005 Dec 9;310(5754):1674-8 [PMID: 16339443]
  3. Sci Data. 2021 Aug 2;8(1):196 [PMID: 34341357]
  4. Sci Rep. 2024 Mar 27;14(1):7313 [PMID: 38538749]
  5. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20666-71 [PMID: 18093934]
  6. Sci Data. 2023 Jul 19;10(1):468 [PMID: 37468492]
  7. ISPRS J Photogramm Remote Sens. 2014 Jan;87(100):180-191 [PMID: 24623958]
  8. Nat Commun. 2021 May 11;12(1):2501 [PMID: 33976120]
  9. Sci Data. 2025 Jan 14;12(1):66 [PMID: 39809785]
  10. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]

Word Cloud

Created with Highcharts 10.0.0landcoverHRclassificationdatasetmapsmulti-spectralaerialimagesUAVorthomosaicsanalysisacrossSerbianaturalhabitatsvaluableresearchersworkingmappingstudyhighlightsvitalrolehigh-resolutionopen-sourcefoodsecurityuseplanningenvironmentalprotectionscarcityfreelyavailabledatasetsunderscoresimportanceusedunmannedvehiclecapturecentimeter-levelfacilitatingadvancedremotesensingspatialmethodcomparesefficacyaccuracyobject-basedimageOBIAcombinedrandomforestconvolutionalneuralnetworksCNNproduceddetailed27variedlandscapesidentifyingnineuniqueclassesassessinghumanimpactresultedecologicalzonesalongsideextensivemetricstrainingdatasiteresourceassessmentbiodiversitymonitoringstudiesonesidenovelmachinelearningmethodsComprehensivehighresolutiondiverseenvironments

Similar Articles

Cited By