Compartmental Models Driven by Renewal Processes: Survival Analysis and Applications to SVIS Epidemic Models.

Divine Wanduku, Md Mahmud Hasan
Author Information
  1. Divine Wanduku: Department of Mathematical Sciences, Georgia Southern University, 65 Georgia Ave, Room 3309, Statesboro, Georgia, 30460, USA. dwanduku@georgiasouthern.edu.
  2. Md Mahmud Hasan: Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 1120, 15th Street, Augusta, GA, 30912, USA.

Abstract

Compartmental models with exponentially distributed lifetime stages assume a constant hazard rate, limiting their scope. This study develops a theoretical framework for systems with general lifetime distributions, modeled as transition rates in a renewal process. Applications are provided for the SVIS (Susceptible-Vaccinated-Infected-Susceptible) disease epidemic model to investigate the impacts of hazard rate functions (HRFs) on disease control. The novel SVIS model is formulated as a non-autonomous nonlinear system (NANLS) of ordinary differential equations (ODEs), with coefficients defined by HRFs. Key statistical properties and the basic reproduction number ([Formula: see text]) are derived, and conditions for the system's asymptotic autonomy are established for specific lifetime distributions. Four HRF behaviors-monotonic, bathtub, reverse bathtub, and constant-are analyzed to determine conditions for disease eradication and the asymptotic population under these scenarios. Sensitivity analysis examines how HRF behaviors shape system trajectories. Numerical simulations illustrate the influence of diverse lifetime models on vaccine efficacy and immunity, offering insights for effective disease management.

Keywords

References

  1. Appl Math Model. 2023 Feb;114:447-465 [PMID: 36281307]
  2. Vaccines (Basel). 2022 Oct 09;10(10): [PMID: 36298547]
  3. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8645-50 [PMID: 21551095]
  4. Math Biosci Eng. 2006 Jul;3(3):557-66 [PMID: 20210380]
  5. Math Biosci. 2011 Jan;229(1):1-15 [PMID: 21129385]
  6. J Math Biol. 2018 Feb;76(3):755-778 [PMID: 28685365]
  7. Math Biosci. 2023 Jun;360:108981 [PMID: 36803672]
  8. Heliyon. 2020 Aug 24;6(8):e04653 [PMID: 32904244]
  9. Heliyon. 2023 Mar 30;9(4):e15125 [PMID: 37077689]
  10. PLoS Comput Biol. 2015 Jan 08;11(1):e1004012 [PMID: 25569257]
  11. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  12. Theor Popul Biol. 2001 Aug;60(1):59-71 [PMID: 11589638]
  13. Bull Math Biol. 2007 Jul;69(5):1511-36 [PMID: 17237913]
  14. PLoS Comput Biol. 2022 Jan 31;18(1):e1009830 [PMID: 35100263]
  15. J R Soc Interface. 2022 Jun;19(191):20220124 [PMID: 35642427]
  16. J Math Biol. 1980 Mar;9(1):37-47 [PMID: 7365328]
  17. Heliyon. 2022 Dec 22;8(12):e12622 [PMID: 36643325]

MeSH Term

Humans
Epidemics
Basic Reproduction Number
Vaccination
Survival Analysis
Computer Simulation
Disease Susceptibility
Communicable Diseases
Epidemiological Models

Word Cloud

Created with Highcharts 10.0.0lifetimeSVISdiseaseratemodelsystemCompartmentalmodelshazarddistributionsprocessApplicationsHRFsconditionsasymptoticHRFbathtubModelsRenewalexponentiallydistributedstagesassumeconstantlimitingscope ThisstudydevelopstheoreticalframeworksystemsgeneralmodeledtransitionratesrenewalprovidedSusceptible-Vaccinated-Infected-Susceptibleepidemicinvestigateimpactsfunctionscontrolnovelformulatednon-autonomousnonlinearNANLSordinarydifferentialequationsODEscoefficientsdefinedKeystatisticalpropertiesbasicreproductionnumber[Formula:seetext]derivedsystem'sautonomyestablishedspecificFourbehaviors-monotonicreverseconstant-areanalyzeddetermineeradicationpopulationscenariosSensitivityanalysisexaminesbehaviorsshapetrajectoriesNumericalsimulationsillustrateinfluencediversevaccineefficacyimmunityofferinginsightseffectivemanagementDrivenProcesses:SurvivalAnalysisEpidemicAsymptoticallyautonomousHazardfunctionJumpProcessNon-autonomousODERandominterjumptimes

Similar Articles

Cited By