Genome-wide association study and genomic prediction of root system architecture traits in Sorghum (Sorghum bicolor (L.) Moench) at the seedling stage.

Muluken Enyew, Mulatu Geleta, Kassahun Tesfaye, Amare Seyoum, Tileye Feyissa, Admas Alemu, Cecilia Hammenhag, Anders S Carlsson
Author Information
  1. Muluken Enyew: Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden. muluken.birara.enyew@slu.se.
  2. Mulatu Geleta: Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
  3. Kassahun Tesfaye: Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
  4. Amare Seyoum: National Sorghum Research Program, Crop Research Department, Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia.
  5. Tileye Feyissa: Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
  6. Admas Alemu: Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
  7. Cecilia Hammenhag: Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
  8. Anders S Carlsson: Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.

Abstract

Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic basis of RSA in Sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in Sorghum landraces at the seedling stage. Phenotypic data for nodal root angle (NRA), number of nodal roots (NNR), nodal root length (NRL), fresh shoot weight (FSW), dry shoot weight (DSW), and leaf area (LA) were collected from 160 Sorghum accessions grown in soil-based rhizotrons. The Sorghum panel was genotyped with 5,000 single nucleotide polymorphism (SNP) markers for use in the current GWAS and GP studies. A multi-locus model, Fixed and random model Circulating Probability Unification (FarmCPU), was applied for GWAS analysis. For GP, ridge-regression best linear unbiased prediction (RR-BLUP) and five different Bayesian models were applied. A total of 17 SNP loci significantly associated with the studied traits were identified, of which nine are novel loci. Among the traits, the highest number of significant marker-trait associations (MTAs) was identified for nodal root angle on chromosomes 1, 3, 6, and 7. The SNP loci that explain the highest proportion of phenotypic variance (PVE) include sbi32853830 (PVE���=���18.2%), sbi29954292 (PVE���=���18.1%), sbi24668980 (PVE���=���10.8%), sbi3022983 (PVE���=���7%), sbi29897704 (PVE���=���6.4%) and sbi29897694 (PVE���=���5.3%) for the traits NNR, LA, SDW, NRA, NRL and SFW, respectively. The genomic prediction accuracy estimated for the studied traits using five Bayesian models ranged from 0.30 to 0.63 while it ranged from 0.35 to 0.60 when the RR-BLUP model was used. The observed moderate to high prediction accuracy for each trait suggests that genomic selection could be a feasible approach to Sorghum RSA-targeted selection and breeding. Overall, the present study provides insights into the genetic bases of RSA and offers an opportunity to speed up breeding for drought-tolerant Sorghum varieties.

Keywords

References

  1. Theor Appl Genet. 2012 Jan;124(1):97-109 [PMID: 21938475]
  2. Sci Rep. 2023 Dec 8;13(1):21917 [PMID: 38081914]
  3. Plant Methods. 2017 Jul 11;13:56 [PMID: 28702072]
  4. Plant J. 2018 Jan;93(2):338-354 [PMID: 29161754]
  5. Plant Genome. 2017 Jul;10(2): [PMID: 28724080]
  6. PLoS Genet. 2016 Feb 01;12(2):e1005767 [PMID: 26828793]
  7. BMC Plant Biol. 2017 Jan 13;17(1):12 [PMID: 28086798]
  8. Heredity (Edinb). 2022 Jun;128(6):519-530 [PMID: 35508540]
  9. Cell Stress Chaperones. 2018 Mar;23(2):253-267 [PMID: 28889352]
  10. Methods Mol Biol. 2019;1931:121-140 [PMID: 30652287]
  11. Theor Appl Genet. 2022 Feb;135(2):537-552 [PMID: 34724078]
  12. Biotechnol Biofuels. 2021 Aug 3;14(1):165 [PMID: 34344425]
  13. Plant Physiol. 2014 Oct;166(2):470-86 [PMID: 25187526]
  14. Plant Genome. 2016 Jul;9(2): [PMID: 27898829]
  15. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12354-9 [PMID: 21737747]
  16. New Phytol. 2012 Jul;195(1):71-84 [PMID: 22530598]
  17. Front Genet. 2024 Aug 28;15:1435474 [PMID: 39301528]
  18. Front Plant Sci. 2019 May 29;10:691 [PMID: 31191590]
  19. Plant Cell. 2014 May 23;26(5):2038-2054 [PMID: 24858937]
  20. PLoS One. 2021 Oct 5;16(10):e0258211 [PMID: 34610051]
  21. Front Plant Sci. 2022 Jan 05;12:799482 [PMID: 35069657]
  22. Plant J. 2006 Jun;46(5):823-33 [PMID: 16709197]
  23. Planta. 2021 Dec 11;255(1):20 [PMID: 34894286]
  24. Plant Cell. 2007 Jun;19(6):1912-29 [PMID: 17573536]
  25. Plant Cell. 2014 Dec;26(12):4862-74 [PMID: 25516602]
  26. Physiol Mol Biol Plants. 2013 Jul;19(3):409-19 [PMID: 24431509]
  27. Plant Methods. 2024 Jan 12;20(1):8 [PMID: 38216953]
  28. Trends Plant Sci. 2017 Nov;22(11):961-975 [PMID: 28965742]
  29. Int J Mol Sci. 2024 Feb 05;25(3): [PMID: 38339196]
  30. Mol Plant. 2024 Apr 1;17(4):552-578 [PMID: 38475993]
  31. Front Plant Sci. 2024 Jan 22;14:1298083 [PMID: 38317832]
  32. Genetics. 2008 Sep;180(1):611-8 [PMID: 18757934]
  33. Plant Genome. 2017 Jul;10(2): [PMID: 28724084]
  34. Genetics. 2001 Apr;157(4):1819-29 [PMID: 11290733]
  35. Rice (N Y). 2015 Mar 21;8:16 [PMID: 25844121]
  36. Genetics. 2013 Jul;194(3):573-96 [PMID: 23636739]
  37. Front Plant Sci. 2022 Oct 07;13:999692 [PMID: 36275578]
  38. BMC Plant Biol. 2024 Jun 15;24(1):562 [PMID: 38877425]
  39. Plant Methods. 2020 Jul 01;16:90 [PMID: 32625241]
  40. Theor Appl Genet. 2023 Apr 3;136(4):92 [PMID: 37009920]
  41. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 [PMID: 22110026]
  42. Front Plant Sci. 2023 Jan 26;13:1009244 [PMID: 36777537]
  43. Plant Genome. 2024 Jun;17(2):e20436 [PMID: 38361379]
  44. Plant J. 2015 Sep;83(5):903-12 [PMID: 26189993]
  45. Front Plant Sci. 2019 Jul 31;10:997 [PMID: 31417601]
  46. Front Plant Sci. 2022 Dec 07;13:1062984 [PMID: 36570928]
  47. Cell. 1996 Apr 19;85(2):159-70 [PMID: 8612269]
  48. J Dairy Sci. 2008 Nov;91(11):4414-23 [PMID: 18946147]
  49. Genetics. 2014 Oct;198(2):483-95 [PMID: 25009151]
  50. Cell. 1998 Jan 9;92(1):93-103 [PMID: 9489703]
  51. Plant Genome. 2021 Nov;14(3):e20158 [PMID: 34719886]
  52. Theor Appl Genet. 2023 Sep 16;136(10):209 [PMID: 37715848]
  53. Theor Appl Genet. 2024 Feb 26;137(3):58 [PMID: 38407646]
  54. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14915-20 [PMID: 20679226]

MeSH Term

Sorghum
Genome-Wide Association Study
Plant Roots
Polymorphism, Single Nucleotide
Seedlings
Phenotype
Genome, Plant
Bayes Theorem
Genomics
Genotype

Word Cloud

Created with Highcharts 10.0.0sorghumtraitspredictionRSAGWASgenomicnodalroot0systemarchitecturegeneticstudyGPaccuracySNPmodellociSorghumRootbasesassociationstudiesseedlingstageangleNRAnumberNNRNRLshootweightLAappliedRR-BLUPfiveBayesianmodelsstudiedidentifiedhighestPVE���=���18rangedtraitselectionbreedingplaysimportantroleplantadaptationdroughtstressHoweverbasisadequatelyelucidatedaimedinvestigategenome-widedeterminelandracesPhenotypicdatarootslengthfreshFSWdryDSWleafareacollected160accessionsgrownsoil-basedrhizotronspanelgenotyped5000singlenucleotidepolymorphismmarkersusecurrentmulti-locusFixedrandomCirculatingProbabilityUnificationFarmCPUanalysisridge-regressionbestlinearunbiaseddifferenttotal17significantlyassociatedninenovelAmongsignificantmarker-traitassociationsMTAschromosomes1367explainproportionphenotypicvariancePVEincludesbi328538302%sbi299542921%sbi24668980PVE���=���108%sbi3022983PVE���=���7%sbi29897704PVE���=���64%sbi29897694PVE���=���53%SDWSFWrespectivelyestimatedusing30633560usedobservedmoderatehighsuggestsfeasibleapproachRSA-targetedOverallpresentprovidesinsightsoffersopportunityspeeddrought-tolerantvarietiesGenome-widebicolorLMoenchGenomicQuantitativelocus

Similar Articles

Cited By

No available data.